Developer Reference for Intel® oneAPI Math Kernel Library for Fortran

ID 766686
Date 12/16/2022
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

?lanv2

Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.

Syntax

call slanv2( a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn )

call dlanv2( a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn )

Include Files
  • mkl.fi
Description

The routine computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form:


Equation

where either

  1. cc = 0 so that aa and dd are real eigenvalues of the matrix, or

  2. aa = dd and bb*cc < 0, so that aa± sqrt(bb*cc) are complex conjugate eigenvalues.

The routine was adjusted to reduce the risk of cancellation errors, when computing real eigenvalues, and to ensure, if possible, that abs(rt1r) abs(rt2r).

Input Parameters
a, b, c, d

REAL for slanv2

DOUBLE PRECISION for dlanv2.

On entry, elements of the input matrix.

Output Parameters
a, b, c, d

On exit, overwritten by the elements of the standardized Schur form.

rt1r, rt1i, rt2r, rt2i

REAL for slanv2

DOUBLE PRECISION for dlanv2.

The real and imaginary parts of the eigenvalues.

If the eigenvalues are a complex conjugate pair, rt1i > 0.

cs, sn

REAL for slanv2

DOUBLE PRECISION for dlanv2.

Parameters of the rotation matrix.