Visible to Intel only — GUID: GUID-BE77D2CD-9056-4372-85FB-519857C51C58
Visible to Intel only — GUID: GUID-BE77D2CD-9056-4372-85FB-519857C51C58
?stedc
Computes all eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.
lapack_int LAPACKE_sstedc( int matrix_layout, char compz, lapack_int n, float* d, float* e, float* z, lapack_int ldz );
lapack_int LAPACKE_dstedc( int matrix_layout, char compz, lapack_int n, double* d, double* e, double* z, lapack_int ldz );
lapack_int LAPACKE_cstedc( int matrix_layout, char compz, lapack_int n, float* d, float* e, lapack_complex_float* z, lapack_int ldz );
lapack_int LAPACKE_zstedc( int matrix_layout, char compz, lapack_int n, double* d, double* e, lapack_complex_double* z, lapack_int ldz );
- mkl.h
The routine computes all the eigenvalues and (optionally) all the eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. The eigenvectors of a full or band real symmetric or complex Hermitian matrix can also be found if sytrd/hetrd or sptrd/hptrd or sbtrd/hbtrd has been used to reduce this matrix to tridiagonal form.
- matrix_layout
-
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
- compz
-
Must be 'N' or 'I' or 'V'.
If compz = 'N', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix.
If compz = 'V', the routine computes the eigenvalues and eigenvectors of original symmetric/Hermitian matrix. On entry, the array z must contain the orthogonal/unitary matrix used to reduce the original matrix to tridiagonal form.
- n
-
The order of the symmetric tridiagonal matrix (n≥ 0).
- d, e
-
Arrays:
d contains the diagonal elements of the tridiagonal matrix.
The dimension of d must be at least max(1, n).
e contains the subdiagonal elements of the tridiagonal matrix.
The dimension of e must be at least max(1, n-1).
- z
-
Array z is of size max(1, ldz*n).
If compz = 'V', then, on entry, z must contain the orthogonal/unitary matrix used to reduce the original matrix to tridiagonal form.
- ldz
-
The leading dimension of z. Constraints:
ldz≥ 1 if compz = 'N';
ldz≥ max(1, n) if compz = 'V' or 'I'.
- d
-
The n eigenvalues in ascending order, unless info≠ 0.
See also info.
- e
-
On exit, the array is overwritten; see info.
- z
-
If info = 0, then if compz = 'V', z contains the orthonormal eigenvectors of the original symmetric/Hermitian matrix, and if compz = 'I', z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If compz = 'N', z is not referenced.
This function returns a value info.
If info=0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = i, the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns i/(n+1) through mod(i, n+1).