Visible to Intel only — GUID: GUID-30A38855-412D-494F-B149-ECD8AD29757C
Visible to Intel only — GUID: GUID-30A38855-412D-494F-B149-ECD8AD29757C
p?getrs
Solves a system of distributed linear equations with a general square matrix, using the LU factorization computed by p?getrf.
void psgetrs (char *trans , MKL_INT *n , MKL_INT *nrhs , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv , float *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
void pdgetrs (char *trans , MKL_INT *n , MKL_INT *nrhs , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv , double *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
void pcgetrs (char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
void pzgetrs (char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
- mkl_scalapack.h
The p?getrsfunction solves a system of distributed linear equations with a general n-by-n distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) using the LU factorization computed by p?getrf.
The system has one of the following forms specified by trans:
sub(A)*X = sub(B) (no transpose),
sub(A)T*X = sub(B) (transpose),
sub(A)H*X = sub(B) (conjugate transpose),
where sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1).
Before calling this function,you must call p?getrf to compute the LU factorization of sub(A).
- trans
-
(global) Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', then sub(A)*X = sub(B) is solved for X.
If trans = 'T', then sub(A)T*X = sub(B) is solved for X.
If trans = 'C', then sub(A)H *X = sub(B) is solved for X.
- n
-
(global) The number of linear equations; the order of the matrix sub(A) (n≥0).
- nrhs
-
(global) The number of right hand sides; the number of columns of the distributed matrix sub(B) (nrhs≥0).
- a, b
-
(local)
Pointers into the local memory to arrays of local sizes lld_a*LOCc(ja+n-1) and lld_b*LOCc(jb+nrhs-1), respectively.
On entry, the array a contains the local pieces of the factors L and U from the factorization sub(A) = P*L*U; the unit diagonal elements of L are not stored. On entry, the array b contains the right hand sides sub(B).
- ia, ja
-
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix sub(A), respectively.
- desca
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
- ipiv
-
(local) Array of size of LOCr(m_a) + mb_a. Contains the pivoting information: local row i of the matrix was interchanged with the global row ipiv[i-1].
This array is tied to the distributed matrix A.
- ib, jb
-
(global) The row and column indices in the global matrix B indicating the first row and the first column of the matrix sub(B), respectively.
- descb
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
- b
-
On exit, overwritten by the solution distributed matrix X.
- info
-
If info=0, the execution is successful. info < 0:
If the i-th argument is an array and the j-th entry, indexed j - 1, had an illegal value, then info = -(i*100+j); if the i-th argument is a scalar and had an illegal value, then info = -i.