Visible to Intel only — GUID: GUID-85CF086B-C856-4896-B6A3-ED48F6221D8B
Visible to Intel only — GUID: GUID-85CF086B-C856-4896-B6A3-ED48F6221D8B
p?trtrs
Solves a system of linear equations with a triangular distributed matrix.
void pstrtrs (char *uplo , char *trans , char *diag , MKL_INT *n , MKL_INT *nrhs , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , float *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
void pdtrtrs (char *uplo , char *trans , char *diag , MKL_INT *n , MKL_INT *nrhs , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , double *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
void pctrtrs (char *uplo , char *trans , char *diag , MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
void pztrtrs (char *uplo , char *trans , char *diag , MKL_INT *n , MKL_INT *nrhs , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
- mkl_scalapack.h
The p?trtrsfunction solves for X one of the following systems of linear equations:
sub(A)*X = sub(B),
(sub(A))T*X = sub(B), or
(sub(A))H*X = sub(B),
where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a triangular distributed matrix of order n, and sub(B) denotes the distributed matrix B(ib:ib+n-1, jb:jb+nrhs-1).
A check is made to verify that sub(A) is nonsingular.
- uplo
-
(global) Must be 'U' or 'L'.
Indicates whether sub(A) is upper or lower triangular:
If uplo = 'U', then sub(A) is upper triangular.
If uplo = 'L', then sub(A) is lower triangular.
- trans
-
(global) Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', then sub(A)*X = sub(B) is solved for X.
If trans = 'T', then sub(A)T*X = sub(B) is solved for X.
If trans = 'C', then sub(A)H*X = sub(B) is solved for X.
- diag
-
(global) Must be 'N' or 'U'.
If diag = 'N', then sub(A) is not a unit triangular matrix.
If diag = 'U', then sub(A) is unit triangular.
- n
-
(global) The order of the distributed matrix sub(A) (n≥0).
- nrhs
-
(global) The number of right-hand sides; i.e., the number of columns of the distributed matrix sub(B) (nrhs≥0).
- a, b
-
(local)
Pointers into the local memory to arrays of local sizes lld_a*LOCc(ja+n-1) and lld_b*LOCc(jb+nrhs-1), respectively.
The array a contains the local pieces of the distributed triangular matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the upper triangular matrix, and the strictly lower triangular part of sub(A) is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the lower triangular matrix, and the strictly upper triangular part of sub(A) is not referenced.
If diag = 'U', the diagonal elements of sub(A) are also not referenced and are assumed to be 1.
On entry, the array b contains the local pieces of the right hand side distributed matrix sub(B).
- ia, ja
-
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix sub(A), respectively.
- desca
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
- ib, jb
-
(global) The row and column indices in the global matrix B indicating the first row and the first column of the matrix sub(B), respectively.
- descb
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
- b
-
On exit, if info=0, sub(B) is overwritten by the solution matrix X.
- info
-
If info=0, the execution is successful.
info < 0:
if the i-th argument is an array and the j-th entry, indexed j - 1, had an illegal value, then info = -(i*100+j); if the i-th argument is a scalar and had an illegal value, then info = -i.
info> 0:
if info = i, the i-th diagonal element of sub(A) is zero, indicating that the submatrix is singular and the solutions X have not been computed.