Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 3/31/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?coosv

Solves a system of linear equations for a sparse matrix in the coordinate format (deprecated).

Syntax

void mkl_scoosv (const char *transa , const MKL_INT *m , const float *alpha , const char *matdescra , const float *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const float *x , float *y );

void mkl_dcoosv (const char *transa , const MKL_INT *m , const double *alpha , const char *matdescra , const double *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const double *x , double *y );

void mkl_ccoosv (const char *transa , const MKL_INT *m , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const MKL_Complex8 *x , MKL_Complex8 *y );

void mkl_zcoosv (const char *transa , const MKL_INT *m , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *rowind , const MKL_INT *colind , const MKL_INT *nnz , const MKL_Complex16 *x , MKL_Complex16 *y );

Include Files
  • mkl.h
Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel® oneAPI Math Kernel Library Inspector-executor Sparse BLAS interface instead.

The mkl_?coosv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the coordinate format:

y := alpha*inv(A)*x

or

y := alpha*inv(AT)*x,

where:

alpha is scalar, x and y are vectors, A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, AT is the transpose of A.

NOTE:

This routine supports a coordinate format both with one-based indexing and zero-based indexing.

Input Parameters

transa

Specifies the system of linear equations.

If transa = 'N' or 'n', then y := alpha*inv(A)*x

If transa = 'T' or 't' or 'C' or 'c', then y := alpha*inv(AT)* x,

m

Number of rows of the matrix A.

alpha

Specifies the scalar alpha.

matdescra

Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra.

val

Array of length nnz, contains non-zero elements of the matrix A in the arbitrary order.

Refer to values array description in Coordinate Format for more details.

rowind

Array of length nnz.

For one-based indexing, contains the row indices plus one for each non-zero element of the matrix A.

For zero-based indexing, contains the row indices for each non-zero element of the matrix A.

Refer to rows array description in Coordinate Format for more details.

colind

Array of length nnz.

For one-based indexing, contains the column indices plus one for each non-zero element of the matrix A.

For zero-based indexing, contains the column indices for each non-zero element of the matrix A.

Refer to columns array description in Coordinate Format for more details.

nnz

Specifies the number of non-zero element of the matrix A.

Refer to nnz description in Coordinate Format for more details.

x

Array, size at least m.

On entry, the array x must contain the vector x. The elements are accessed with unit increment.

y

Array, size at least m.

On entry, the array y must contain the vector y. The elements are accessed with unit increment.

Output Parameters
y

Contains solution vector x.