Visible to Intel only — GUID: GUID-828B12CB-41EB-4737-8782-64EBBD992E77
Visible to Intel only — GUID: GUID-828B12CB-41EB-4737-8782-64EBBD992E77
p?lauu2
Computes the product U*U' or L'*L, where U and L are upper or lower triangular matrices (local unblocked algorithm).
void pslauu2 (char *uplo , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca );
void pdlauu2 (char *uplo , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca );
void pclauu2 (char *uplo , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca );
void pzlauu2 (char *uplo , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca );
- mkl_scalapack.h
The p?lauu2function computes the product U*U' or L'*L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix
sub(A)= A(ia:ia+n-1, ja:ja+n-1).
If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U in sub(A).
If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor L in sub(A).
This is the unblocked form of the algorithm, calling BLAS Level 2 Routines. No communication is performed by this function, the matrix to operate on should be strictly local to one process.
- uplo
-
(global)
Specifies whether the triangular factor stored in the matrix sub(A) is upper or lower triangular:
= U: upper triangular
= L: lower triangular.
- n
-
(global)
The number of rows and columns to be operated on, that is, the order of the triangular factor U or L. n ≥ 0.
- a
-
(local)
Pointer into the local memory to an array of size lld_a * LOCc(ja+n-1). On entry, the local pieces of the triangular factor U or L.
- ia
-
(global)
The row index in the global matrix A indicating the first row of sub(A).
- ja
-
(global)
The column index in the global matrix A indicating the first column of sub(A).
- desca
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
- a
-
(local)
On exit, if uplo = 'U', the upper triangle of the distributed matrix sub(A) is overwritten with the upper triangle of the product U*U'; if uplo = 'L', the lower triangle of sub(A) is overwritten with the lower triangle of the product L'*L.