Visible to Intel only — GUID: GUID-5804E9AE-A32D-4586-8140-6A2C2F705802
Visible to Intel only — GUID: GUID-5804E9AE-A32D-4586-8140-6A2C2F705802
mkl_?bsrsv
Solves a system of linear equations for a sparse matrix in the BSR format (deprecated).
void mkl_sbsrsv (const char *transa , const MKL_INT *m , const MKL_INT *lb , const float *alpha , const char *matdescra , const float *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const float *x , float *y );
void mkl_dbsrsv (const char *transa , const MKL_INT *m , const MKL_INT *lb , const double *alpha , const char *matdescra , const double *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const double *x , double *y );
void mkl_cbsrsv (const char *transa , const MKL_INT *m , const MKL_INT *lb , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zbsrsv (const char *transa , const MKL_INT *m , const MKL_INT *lb , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const MKL_Complex16 *x , MKL_Complex16 *y );
- mkl.h
This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel® oneAPI Math Kernel Library Inspector-executor Sparse BLAS interface instead.
The mkl_?bsrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the BSR format:
y := alpha*inv(A)*x
or
y := alpha*inv(AT)* x,
where:
alpha is scalar, x and y are vectors, A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, AT is the transpose of A.
This routine supports a BSR format both with one-based indexing and zero-based indexing.
- transa
-
Specifies the operation.
If transa = 'N' or 'n', then y := alpha*inv(A)*x
If transa = 'T' or 't' or 'C' or 'c', then y := alpha*inv(AT)* x,
- m
-
Number of block columns of the matrix A.
- lb
-
Size of the block in the matrix A.
- alpha
-
Specifies the scalar alpha.
- matdescra
-
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra”.
- val
-
Array containing elements of non-zero blocks of the matrix A. Its length is equal to the number of non-zero blocks in the matrix A multiplied by lb*lb.
Refer to the values array description in BSR Format for more details.
NOTE:The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).
No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
- indx
-
For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix A. For zero-based indexing, array containing the column indices for each non-zero element of the matrix A.
Its length is equal to the number of non-zero blocks in the matrix A.
Refer to the columns array description in BSR Format for more details.
- pntrb
-
Array of length m.
This array contains row indices, such that pntrb[i] - pntrb[0] is the first index of block row i in the array indx
Refer to pointerB array description in BSR Format for more details.
- pntre
-
Array of length m.
For one-based indexing this array contains row indices, such that pntre[i] - pntrb[1] is the last index of block row i in the array indx.
For zero-based indexing this array contains row indices, such that pntre[i] - pntrb[0] - 1 is the last index of block row i in the array indx.
Refer to pointerE array description in BSR Format for more details.
- x
-
Array, size at least (m*lb).
On entry, the array x must contain the vector x. The elements are accessed with unit increment.
- y
-
Array, size at least (m*lb).
On entry, the array y must contain the vector y. The elements are accessed with unit increment.
- y
-
Contains solution vector x.