Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 3/31/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?diamm

Computes matrix-matrix product of a sparse matrix stored in the diagonal format with one-based indexing (deprecated).

Syntax

void mkl_sdiamm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const float *alpha , const char *matdescra , const float *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const float *b , const MKL_INT *ldb , const float *beta , float *c , const MKL_INT *ldc );

void mkl_ddiamm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const double *alpha , const char *matdescra , const double *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const double *b , const MKL_INT *ldb , const double *beta , double *c , const MKL_INT *ldc );

void mkl_cdiamm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex8 *b , const MKL_INT *ldb , const MKL_Complex8 *beta , MKL_Complex8 *c , const MKL_INT *ldc );

void mkl_zdiamm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex16 *b , const MKL_INT *ldb , const MKL_Complex16 *beta , MKL_Complex16 *c , const MKL_INT *ldc );

Include Files
  • mkl.h
Description

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel® oneAPI Math Kernel Library Inspector-executor Sparse BLAS interface instead.

The mkl_?diamm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*AT*B + beta*C,

or

C := alpha*AH*B + beta*C,

where:

alpha and beta are scalars,

B and C are dense matrices, A is an m-by-k sparse matrix in the diagonal format, AT is the transpose of A, and AH is the conjugate transpose of A.

NOTE:

This routine supports only one-based indexing of the input arrays.

Input Parameters

transa

Specifies the operation.

If transa = 'N' or 'n', then C := alpha*A*B + beta*C,

If transa = 'T' or 't', then C := alpha*AT*B + beta*C,

If transa = 'C' or 'c', then C := alpha*AH*B + beta*C.

m

Number of rows of the matrix A.

n

Number of columns of the matrix C.

k

Number of columns of the matrix A.

alpha

Specifies the scalar alpha.

matdescra

Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra.

val

Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details.

lval

Leading dimension of val, lvalm. Refer to lval description in Diagonal Storage Scheme for more details.

idiag

Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix A.

Refer to distance array description in Diagonal Storage Scheme for more details.

ndiag

Specifies the number of non-zero diagonals of the matrix A.

b

Array, size ldb* n.

On entry with transa = 'N' or 'n', the leading k-by-n part of the array b must contain the matrix B, otherwise the leading m-by-n part of the array b must contain the matrix B.

ldb

Specifies the leading dimension of b as declared in the calling (sub)program.

beta

Specifies the scalar beta.

c

Array, size ldc by n.

On entry, the leading m-by-n part of the array c must contain the matrix C, otherwise the leading k-by-n part of the array c must contain the matrix C.

ldc

Specifies the leading dimension of c as declared in the calling (sub)program.

Output Parameters
c

Overwritten by the matrix (alpha*A*B + beta*C), (alpha*AT*B + beta*C), or (alpha*AH*B + beta*C).