Visible to Intel only — GUID: sam1403479234638
Ixiasoft
1. Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices
2. Embedded Memory Blocks in Stratix V Devices
3. Variable Precision DSP Blocks in Stratix V Devices
4. Clock Networks and PLLs in Stratix V Devices
5. I/O Features in Stratix V Devices
6. High-Speed Differential I/O Interfaces and DPA in Stratix® V Devices
7. External Memory Interfaces in Stratix V Devices
8. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices
9. SEU Mitigation for Stratix V Devices
10. JTAG Boundary-Scan Testing in Stratix V Devices
11. Power Management in Stratix V Devices
2.1. Types of Embedded Memory
2.2. Embedded Memory Design Guidelines for Stratix V Devices
2.3. Embedded Memory Features
2.4. Embedded Memory Modes
2.5. Embedded Memory Clocking Modes
2.6. Parity Bit in Memory Blocks
2.7. Byte Enable in Embedded Memory Blocks
2.8. Memory Blocks Packed Mode Support
2.9. Memory Blocks Address Clock Enable Support
2.10. Memory Blocks Asynchronous Clear
2.11. Memory Blocks Error Correction Code Support
2.12. Embedded Memory Blocks in Stratix V Devices Revision History
4.2.1. PLL Physical Counters in Stratix V Devices
4.2.2. PLL Locations in Stratix® V Devices
4.2.3. PLL Migration Guidelines
4.2.4. Fractional PLL Architecture
4.2.5. PLL Cascading
4.2.6. PLL External Clock I/O Pins
4.2.7. PLL Control Signals
4.2.8. Clock Feedback Modes
4.2.9. Clock Multiplication and Division
4.2.10. Programmable Phase Shift
4.2.11. Programmable Duty Cycle
4.2.12. Clock Switchover
4.2.13. PLL Reconfiguration and Dynamic Phase Shift
5.1. I/O Standards Support in Stratix V Devices
5.2. I/O Design Guidelines for Stratix V Devices
5.3. I/O Banks in Stratix® V Devices
5.4. I/O Banks Groups in Stratix V Devices
5.5. I/O Element Structure in Stratix V Devices
5.6. Programmable IOE Features in Stratix® V Devices
5.7. On-Chip I/O Termination in Stratix® V Devices
5.8. I/O Termination Schemes for Stratix® V Devices
5.9. I/O Features in Stratix V Devices Revision History
5.6.1. Programmable Current Strength
5.6.2. Programmable Output Slew Rate Control
5.6.3. Programmable IOE Delay
5.6.4. Programmable Output Buffer Delay
5.6.5. Programmable Pre-Emphasis
5.6.6. Programmable Differential Output Voltage
5.6.7. Open-Drain Output
5.6.8. Bus-Hold Circuitry
5.6.9. Pull-up Resistor
5.7.1. RS OCT without Calibration in Stratix® V Devices
5.7.2. RS OCT with Calibration in Stratix® V Devices
5.7.3. RT OCT with Calibration in Stratix® V Devices
5.7.4. Dynamic OCT in Stratix® V Devices
5.7.5. LVDS Input RD OCT in Stratix V Devices
5.7.6. OCT Calibration Block in Stratix V Devices
5.7.7. OCT Calibration in Power-Up Mode
5.7.8. OCT Calibration in User Mode
6.1. Dedicated High-Speed Circuitries in Stratix® V Devices
6.2. High-Speed I/O Design Guidelines for Stratix® V Devices
6.3. Differential Transmitter in Stratix V Devices
6.4. Differential Receiver in Stratix V Devices
6.5. Source-Synchronous Timing Budget
6.6. High-Speed Differential I/O Interfaces and DPA in Stratix® V Devices Revision History
7.3.1. UniPHY IP
7.3.2. External Memory Interface Datapath
7.3.3. DQS Phase-Shift Circuitry
7.3.4. Phase Offset Control
7.3.5. PHY Clock (PHYCLK) Networks
7.3.6. DQS Logic Block
7.3.7. Leveling Circuitry
7.3.8. Dynamic OCT Control
7.3.9. IOE Registers
7.3.10. Delay Chains
7.3.11. I/O and DQS Configuration Blocks
8.1. Enhanced Configuration and Configuration via Protocol
8.2. MSEL Pin Settings
8.3. Configuration Sequence
8.4. Configuration Timing Waveforms
8.5. Device Configuration Pins
8.6. Fast Passive Parallel Configuration
8.7. Active Serial Configuration
8.8. Using EPCS and EPCQ Devices
8.9. Passive Serial Configuration
8.10. JTAG Configuration
8.11. Configuration Data Compression
8.12. Remote System Upgrades
8.13. Design Security
8.14. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Revision History
10.1. BST Operation Control
10.2. I/O Voltage for JTAG Operation
10.3. Performing BST
10.4. Enabling and Disabling IEEE Std. 1149.1 BST Circuitry
10.5. Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing
10.6. IEEE Std. 1149.1 Boundary-Scan Register
10.7. IEEE Std. 1149.6 Boundary-Scan Register
10.8. JTAG Boundary-Scan Testing inStratix V Devices Revision History
Visible to Intel only — GUID: sam1403479234638
Ixiasoft
10.5. Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing
Consider the following guidelines when you perform BST with IEEE Std. 1149.1 devices:
- If the “10...” pattern does not shift out of the instruction register through the TDO pin during the first clock cycle of the SHIFT_IR state, the TAP controller did not reach the proper state. To solve this problem, try one of the following procedures:
- Verify that the TAP controller has reached the SHIFT_IR state correctly. To advance the TAP controller to the SHIFT_IR state, return to the RESET state and send the 01100 code to the TMS pin.
- Check the connections to the VCC, GND, JTAG, and dedicated configuration pins on the device.
- Perform a SAMPLE/PRELOAD test cycle before the first EXTEST test cycle to ensure that known data is present at the device pins when you enter EXTEST mode. If the OEJ update register contains 0, the data in the OUTJ update register is driven out. The state must be known and correct to avoid contention with other devices in the system.
- Do not perform EXTEST testing during in-circuit reconfiguration because EXTEST is not supported during in-circuit reconfiguration. To perform testing, wait for the configuration to complete or issue the CONFIG_IO instruction to interrupt configuration.
- After configuration, you cannot test any pins in a differential pin pair. To perform BST after configuration, edit and redefine the BSC group that correspond to these differential pin pairs as an internal cell.
Related Information