Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 7/13/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

p?trmm

Computes a scalar-matrix-matrix product (one matrix operand is triangular) for distributed matrices.

Syntax

void pstrmm (const char *side , const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const MKL_INT *n , const float *alpha , const float *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , float *b , const MKL_INT *ib , const MKL_INT *jb , const MKL_INT *descb );

void pdtrmm (const char *side , const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const MKL_INT *n , const double *alpha , const double *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , double *b , const MKL_INT *ib , const MKL_INT *jb , const MKL_INT *descb );

void pctrmm (const char *side , const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const MKL_INT *n , const MKL_Complex8 *alpha , const MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , MKL_Complex8 *b , const MKL_INT *ib , const MKL_INT *jb , const MKL_INT *descb );

void pztrmm (const char *side , const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const MKL_INT *n , const MKL_Complex16 *alpha , const MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , MKL_Complex16 *b , const MKL_INT *ib , const MKL_INT *jb , const MKL_INT *descb );

Include Files

  • mkl_pblas.h

Description

The p?trmm routines perform a matrix-matrix operation using triangular matrices. The operation is defined as

sub(B) := alpha*op(sub(A))*sub(B)

or

sub(B) := alpha*sub(B)*op(sub(A))

where:

alpha is a scalar,

sub(B) is an m-by-n distributed matrix, sub(B)=B(ib:ib+m-1, jb:jb+n-1).

A is a unit, or non-unit, upper or lower triangular distributed matrix, sub(A)=A(ia:ia+m-1, ja:ja+m-1), if side = 'L' or 'l', and sub(A)=A(ia:ia+n-1, ja:ja+n-1), if side = 'R' or 'r'.

op(sub(A)) is one of op(sub(A)) = sub(A), or op(sub(A)) = sub(A)', or op(sub(A)) = conjg(sub(A)').

Input Parameters

side

(global) Specifies whether op(sub(A)) appears on the left or right of sub(B) in the operation:

if side = 'L' or 'l', then sub(B) := alpha*op(sub(A))*sub(B);

if side = 'R' or 'r', then sub(B) := alpha*sub(B)*op(sub(A)).

uplo

(global) Specifies whether the distributed matrix sub(A) is upper or lower triangular:

if uplo = 'U' or 'u', then the matrix is upper triangular;

if uplo = 'L' or 'l', then the matrix is low triangular.

transa

(global) Specifies the form of op(sub(A)) used in the matrix multiplication:

if transa = 'N' or 'n', then op(sub(A)) = sub(A);

if transa = 'T' or 't', then op(sub(A)) = sub(A)' ;

if transa = 'C' or 'c', then op(sub(A)) = conjg(sub(A)').

diag

(global) Specifies whether the matrix sub(A) is unit triangular:

if diag = 'U' or 'u' then the matrix is unit triangular;

if diag = 'N' or 'n', then the matrix is not unit triangular.

m

(global) Specifies the number of rows of the distributed matrix sub(B), m 0.

n

(global) Specifies the number of columns of the distributed matrix sub(B), n 0.

alpha

(global)

Specifies the scalar alpha.

When alpha is zero, then the arrayb need not be set before entry.

a

(local)

Array, size lld_a by ka, where ka is at least LOCq(1, ja+m-1) when side = 'L' or 'l' and is at least LOCq(1, ja+n-1) when side = 'R' or 'r'.

Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub(A), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub(A) is not referenced.

Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub(A), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub(A) is not referenced .

When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub(A) are not referenced either, but are assumed to be unity.

ia, ja

(global) The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub(A), respectively.

desca

(global and local) array of dimension 9. The array descriptor of the distributed matrix A.

b

(local)

Array, size (lld_b, LOCq(1, jb+n-1)).

Before entry, this array contains the local pieces of the distributed matrix sub(B).

ib, jb

(global) The row and column indices in the distributed matrix B indicating the first row and the first column of the submatrix sub(B), respectively.

descb

(global and local) array of dimension 9. The array descriptor of the distributed matrix B.

Output Parameters

b

Overwritten by the transformed distributed matrix.