Visible to Intel only — GUID: GUID-F65C2255-963E-429F-9E74-99DFBCE1526F
Visible to Intel only — GUID: GUID-F65C2255-963E-429F-9E74-99DFBCE1526F
DFTI_PACKED_FORMAT
The result of the forward transform of real data is a conjugate-even sequence. Due to the symmetry property, only a part of the complex-valued sequence is stored in memory. The combination of the DFTI_PACKED_FORMAT and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters defines how the conjugate-even sequence data is packed. If DFTI_CONJUGATE_EVEN_STORAGE is set to DFTI_COMPLEX_COMPLEX (default), the only possible value of DFTI_PACKED_FORMAT is DFTI_CCE_FORMAT; this association of configuration parameters is supported for transforms of any dimension. For a description of the corresponding packed format, see DFTI_CONJUGATE_EVEN_STORAGE. For one-dimensional transforms (only) with DFTI_CONJUGATE_EVEN_STORAGE set to DFTI_COMPLEX_REAL, the DFTI_PACKED_FORMAT configuration parameter must be DFTI_CCS_FORMAT, DFTI_PACK_FORMAT, or DFTI_PERM_FORMAT. The corresponding packed formats are explained and illustrated below.
DFTI_CCS_FORMAT for One-dimensional Transforms
The following figure illustrates the storage of a one-dimensional (1D) size-N conjugate-even sequence in a real array for the CCS, PACK, and PERM packed formats. The CCS format requires an array of size N+2, while the other formats require an array of size N. Zero-based indexing is used.
The real and imaginary parts of the complex-valued conjugate-even sequence Zk are located in a real-valued array AC as illustrated by figure "Storage of a 1D Size-N Conjugate-even Sequence in a Real Array" and can be used to reconstruct the whole conjugate-even sequence as follows:
float *AR; // malloc( sizeof(float)*N ) float *AC; // malloc( sizeof(float)*(N+2) ) ... status = DftiSetValue( desc, DFTI_PACKED_FORMAT, DFTI_CCS_FORMAT ); ... // on input: R{k} = AR[k] status = DftiComputeForward( desc, AR, AC ); // real-to-complex FFT // on output: // for k=0…N/2: Z{k} = AC[2*k+0] + I*AC[2*k+1] // for k=N/2+1…N-1: Z{k} = AC[2*(N-k)%N + 0] - I*AC[2*(N-k)%N + 1]
DFTI_PACK_FORMAT for One-dimensional Transforms
The real and imaginary parts of the complex-valued conjugate-even sequence Zk are located in a real-valued array AC as illustrated by figure "Storage of a 1D Size-N Conjugate-even Sequence in a Real Array" and can be used to reconstruct the whole conjugate-even sequence as follows:
float *AR; // malloc( sizeof(float)*N ) float *AC; // malloc( sizeof(float)*N ) ... status = DftiSetValue( desc, DFTI_PACKED_FORMAT, DFTI_PACK_FORMAT ); ... // on input: R{k} = AR[k] status = DftiComputeForward( desc, AR, AC ); // real-to-complex FFT // on output: Z{k} = re + I*im, where // if (k == 0) { // re = AC[0]; // im = 0; // } else if (k == N-k) { // re = AC[2*k-1]; // im = 0; // } else if (k <= N/2) { // re = AC[2*k-1]; // im = AC[2*k-0]; // } else { // re = AC[2*(N-k)-1]; // im = -AC[2*(N-k)-0]; // }
DFTI_PERM_FORMAT for One-dimensional Transforms
The real and imaginary parts of the complex-valued conjugate-even sequence Zk are located in real-valued array AC as illustrated by figure "Storage of a 1D Size-N Conjugate-even Sequence in a Real Array" and can be used to reconstruct the whole conjugate-even sequence as follows:
float *AR; // malloc( sizeof(float)*N ) float *AC; // malloc( sizeof(float)*N ) ... status = DftiSetValue( desc, DFTI_PACKED_FORMAT, DFTI_PERM_FORMAT ); ... // on input: R{k} = AR[k] status = DftiComputeForward( desc, AR, AC ); // real-to-complex FFT // on output: Z{k} = re + I*im, where // if (k == 0) { // re = AC[0]; // im = 0; // } else if (k == N-k) { // re = AC[1]; // im = 0; // } else if (k <= N/2) { // re = AC[2*k+0 - N%2]; // im = AC[2*k+1 - N%2]; // } else { // re = AC[2*(N-k)+0 - N%2]; // im = -AC[2*(N-k)+1 - N%2]; // }