Visible to Intel only — GUID: GUID-67EC72B2-AC47-4767-BDF9-77FF3FBEA778
Visible to Intel only — GUID: GUID-67EC72B2-AC47-4767-BDF9-77FF3FBEA778
p?gerqf
Computes the RQ factorization of a general rectangular matrix.
Syntax
void psgerqf (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , float *tau , float *work , MKL_INT *lwork , MKL_INT *info );
void pdgerqf (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , double *tau , double *work , MKL_INT *lwork , MKL_INT *info );
void pcgerqf (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info );
void pzgerqf (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info );
Include Files
- mkl_scalapack.h
Description
The p?gerqf function forms the QR factorization of a general m-by-n distributed matrix sub(A)= A(ia:ia+m-1, ja:ja+n-1) as
A= R*Q
Input Parameters
- m
-
(global) The number of rows in the distributed matrix sub(A); (m≥0).
- n
-
(global) The number of columns in the distributed matrix sub(A); (n≥0).
- a
-
(local)
Pointer into the local memory to an array of local size lld_a*LOCc(ja+n-1).
Contains the local pieces of the distributed matrix sub(A) to be factored.
- ia, ja
-
(global) The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A(ia:ia+m-1, ja:ja+n-1), respectively.
- desca
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix A
- work
-
(local).
Workspace array of size lwork.
- lwork
-
(local or global) size of work, must be at least lwork≥mb_a*(mp0+nq0+mb_a), where
iroff = mod(ia-1, mb_a),
icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW),
NOTE:mod(x,y) is the integer remainder of x/y.
nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL) and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
Output Parameters
- a
-
On exit, if m≤n, the upper triangle of A(ia:ia+m-1, ja:ja+n-1) contains the m-by-m upper triangular matrix R; if m≥n, the elements on and above the (m - n)-th subdiagonal contain the m-by-n upper trapezoidal matrix R; the remaining elements, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors (see Application Notes below).
- tau
-
(local)
Array of size LOCr(ia+m-1).
Contains the scalar factor of elementary reflectors. tau is tied to the distributed matrix A.
- work[0]
-
On exit, work[0] contains the minimum value of lwork required for optimum performance.
- info
-
(global)
= 0, the execution is successful.
< 0, if the i-th argument is an array and the j-th entry, indexed j - 1, had an illegal value, then info = -(i*100+j); if the i-th argument is a scalar and had an illegal value, then info = -i.
Application Notes
The matrix Q is represented as a product of elementary reflectors
Q = H(ia)*H(ia+1)*...*H(ia+k-1),
where k = min(m,n).
Each H(i) has the form
H(i) = I - tau*v*v'
where tau is a real/complex scalar, and v is a real/complex vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(ia+m-k+i-1,ja:ja+n-k+i-2), and tau in tau[ia+m-k+i-2].