AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Microcontrollers

ID 848984
Date 4/07/2025
Public

Visible to Intel only — GUID: cuw1739945022718

Ixiasoft

Document Table of Contents

2.2.2. Preprocessing Dataset

Perform data preprocessing by reshaping, normalizing, and encoding the dataset.

# Reshape the data into a 4D Array
x_train = x_train.reshape(x_train.shape[0], rows, cols, 1)
x_test = x_test.reshape(x_test.shape[0], rows, cols, 1)

input_shape = (rows,cols,1)

# Set type as float32 and normalize the values to [0,1]
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train = x_train / 255.0
x_test = x_test / 255.0

# Transform labels to one hot encoding
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)