Visible to Intel only — GUID: fnz1739945209905
Ixiasoft
2.3.1. Constructing Model Architecture
Construct a LeNet-5 model (or any other CNN model).
# Construct a Sequential Model model = tf.keras.Sequential() # Input Layer model.add(tf.keras.layers.Input(shape=input_shape)) # C1 Convolution Layer model.add(tf.keras.layers.Conv2D(filters=6, strides=(1,1), kernel_size=(5,5), activation='relu')) # S2 SubSampling Layer model.add(tf.keras.layers.AveragePooling2D(pool_size=(2,2), strides=(2,2))) # C3 Convolution Layer model.add(tf.keras.layers.Conv2D(filters=6, strides=(1,1), kernel_size=(5,5), activation='relu')) # S4 SubSampling Layer model.add(tf.keras.layers.AveragePooling2D(pool_size=(2,2), strides=(2,2))) # C5 Fully Connected Layer model.add(tf.keras.layers.Dense(units=120, activation='relu')) # Flatten Layer model.add(tf.keras.layers.Flatten()) # FC6 Fully Connected Layer model.add(tf.keras.layers.Dense(units=84, activation='relu')) # Output Layer model.add(tf.keras.layers.Dense(units=10, activation='softmax')) # Display a Summary of the Model model.summary()
Figure 2. Summary of the Model