Visible to Intel only — GUID: nik1409855389154
Ixiasoft
1. Transceiver Architecture in Arria V Devices
2. Transceiver Clocking in Arria V Devices
3. Transceiver Reset Control in Arria V Devices
4. Transceiver Protocol Configurations in Arria V Devices
5. Transceiver Custom Configurations in Arria V Devices
6. Transceiver Configurations in Arria V GZ Devices
7. Transceiver Loopback Support in Arria V Devices
8. Dynamic Reconfiguration in Arria V Devices
1.2.2.1.1. Word Aligner in Manual Alignment Mode
1.2.2.1.2. Bit-Slip Mode
1.2.2.1.3. Word Aligner in Automatic Synchronization State Machine Mode
1.2.2.1.4. Word Aligner in Deterministic Latency State Machine Mode
1.2.2.1.5. Programmable Run-Length Violation Detection
1.2.2.1.6. Receiver Polarity Inversion
1.2.2.1.7. Bit Reversal
1.2.2.1.8. Receiver Byte Reversal
3.1. PHY IP Embedded Reset Controller
3.2. User-Coded Reset Controller
3.3. Transceiver Reset Using Avalon Memory Map Registers
3.4. Clock Data Recovery in Manual Lock Mode
Resetting the Transceiver During Dynamic Reconfiguration
3.6. Transceiver Blocks Affected by the Reset and Powerdown Signals
3.7. Transceiver Power-Down
3.8. Document Revision History
3.2.1. User-Coded Reset Controller Signals
3.2.2. Resetting the Transmitter with the User-Coded Reset Controller During Device Power-Up
3.2.3. Resetting the Transmitter with the User-Coded Reset Controller During Device Operation
3.2.4. Resetting the Receiver with the User-Coded Reset Controller During Device Power-Up Configuration
3.2.5. Resetting the Receiver with the User-Coded Reset Controller During Device Operation
4.1. PCI Express
4.2. Gigabit Ethernet
4.3. XAUI
4.4. 10GBASE-R
4.5. Serial Digital Interface
4.6. Gigabit-Capable Passive Optical Network (GPON)
4.7. Serial Data Converter (SDC) JESD204
4.8. SATA and SAS Protocols
4.9. Deterministic Latency Protocols—CPRI and OBSAI
4.10. Serial RapidIO
4.11. Document Revision History
4.1.2.1. PIPE Interface
4.1.2.2. Transmitter Electrical Idle Generation
4.1.2.3. Power State Management
4.1.2.4. 8B/10B Encoder Usage for Compliance Pattern Transmission Support
4.1.2.5. Receiver Status
4.1.2.6. Receiver Detection
4.1.2.7. Clock Rate Compensation Up to ±300 ppm
4.1.2.8. PCIe Reverse Parallel Loopback
6.1.1. 10GBASE-R and 10GBASE-KR Transceiver Datapath Configuration
6.1.2. 10GBASE-R and 10GBASE-KR Supported Features
6.1.3. 1000BASE-X and 1000BASE-KX Transceiver Datapath
6.1.4. 1000BASE-X and 1000BASE-KX Supported Features
6.1.5. Synchronization State Machine Parameters in 1000BASE-X and 1000BASE-KX Configurations
6.1.6. Transceiver Clocking in 10GBASE-R, 10GBASE-KR, 1000BASE-X, and 1000BASE-KX Configurations
6.3.1. Transceiver Datapath Configuration
6.3.2. Supported Features for PCIe Configurations
6.3.3. Supported Features for PCIe Gen3
6.3.4. Transceiver Clocking and Channel Placement Guidelines
6.3.5. Advanced Channel Placement Guidelines for PIPE Configurations
6.3.6. Transceiver Clocking for PCIe Gen3
6.7.1. Protocols and Transceiver PHY IP Support
6.7.2. Native PHY Transceiver Datapath Configuration
6.7.3. Standard PCS Features
6.7.4. 10G PCS Supported Features
6.7.5. 10G Datapath Configurations with Native PHY IP
6.7.6. PMA Direct Supported Features
6.7.7. Channel and PCS Datapath Dynamic Switching Reconfiguration
8.1. Dynamic Reconfiguration Features
8.2. Offset Cancellation
8.3. Transmitter Duty Cycle Distortion Calibration
8.4. PMA Analog Controls Reconfiguration
8.5. Dynamic Reconfiguration of Loopback Modes
8.6. Transceiver PLL Reconfiguration
8.7. Transceiver Channel Reconfiguration
8.8. Transceiver Interface Reconfiguration
8.9. Reduced .mif Reconfiguration
8.10. On-Chip Signal Quality Monitoring (Eye Viewer)
8.11. Adaptive Equalization
8.12. Decision Feedback Equalization
8.13. Unsupported Reconfiguration Modes
8.14. Document Revision History
Visible to Intel only — GUID: nik1409855389154
Ixiasoft
4.3. XAUI
In a XAUI configuration, the transceiver channel data path is configured using soft PCS. It provides the transceiver channel datapath description, clocking, and channel placement guidelines. To implement a XAUI link, instantiate the XAUI PHY IP core in the IP Catalog, which is under Ethernet in the Interfaces menu. The XAUI PHY IP core implements the XAUI PCS in soft logic.
XAUI is a specific physical layer implementation of the 10 Gigabit Ethernet link defined in the IEEE 802.3ae-2002 specification. The XAUI PHY uses the XGMII interface to connect to the IEEE802.3 MAC and Reconciliation Sublayer (RS). The IEEE 802.3ae-2002 specification requires the XAUI PHY link to support a 10 Gbps data rate at the XGMII interface and four lanes each at 3.125 Gbps at the PMD interface.
Figure 111. XAUI and XGMII Layers