Visible to Intel only — GUID: hco1423077060891
Ixiasoft
1. Answers to Top FAQs
2. About DSP Builder for Intel® FPGAs
3. DSP Builder for Intel FPGAs Advanced Blockset Getting Started
4. DSP Builder Design Flow
5. Primitive Library Blocks Tutorial
6. IP Tutorial
7. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs
8. DSP Builder Design Rules, Design Recommendations, and Troubleshooting
9. About DSP Builder for Intel FPGAs Optimization
10. About Folding
11. Floating-Point Data Types
12. Design Configuration Library
13. IP Library
14. Interfaces Library
15. Primitives Library
16. Utilities Library
17. Simulink Supported Blocks
18. Document Revision History for DSP Builder for Intel FPGAs (Advanced Blockset) Handbook
3.1. Starting DSP Builder in MATLAB*
3.2. Browsing DSP Builder Libraries and Adding Blocks to a New Model
3.3. Browsing and Opening DSP Builder Design Examples
3.4. Creating a New DSP Builder Design with the DSP Builder New Model Wizard
3.5. Simulating, Verifying, Generating, and Compiling Your DSP Builder Design
4.1. Implementing your Design in DSP Builder Advanced Blockset
4.2. Verifying your DSP Builder Advanced Blockset Design in Simulink and MATLAB
4.3. Exploring DSP Builder Advanced Blockset Design Tradeoffs
4.4. Verifying your DSP Builder Design with C++ Software Models
4.5. Verifying your DSP Builder Advanced Blockset Design in the ModelSim Simulator
4.6. Verifying Your DSP Builder Design in Hardware
4.7. Integrating Your DSP Builder Advanced Blockset Design into Hardware
4.1.2.1. DSP Builder Block Interface Signals
4.1.2.2. Periods
4.1.2.3. Sample Rate
4.1.2.4. Building Multichannel Systems
4.1.2.5. Channelization for Two Channels with a Folding Factor of 3
4.1.2.6. Channelization for Four Channels with a Folding Factor of 3
4.1.2.7. Synchronization and Scheduling of Data with the Channel Signal
4.1.2.8. Simulink vs Hardware Design Representations
4.2.1. Verifying your DSP Builder Advanced Blockset Design with a Testbench
4.2.2. Running DSP Builder Advanced Blockset Automatic Testbenches
4.2.3. Using DSP Builder Advanced Blockset References
4.2.4. Setting Up Stimulus in DSP Builder Advanced Blockset
4.2.5. Analyzing your DSP Builder Advanced Blockset Design
5.1. Creating a Fibonacci Design from the DSP Builder Primitive Library
5.2. Setting the Parameters on the Testbench Source Blocks
5.3. Simulating the Fibonacci Design in Simulink
5.4. Modifying the DSP Builder Fibonacci Design to Generate Vector Signals
5.5. Simulating the RTL of the Fibonacci Design
6.1. Creating an IP Design
6.2. Simulating the IP Design in Simulink
6.3. Viewing Timing Closure and Viewing Resource Utilization for the DSP Builder IP Design
6.4. Reparameterizing the DSP Builder FIR Filter to Double the Number of Channels
6.5. Doubling the Target Clock Rate for a DSP Builder IP Design
7.1. DSP Builder Design Configuration Block Design Examples
7.2. DSP Builder FFT Design Examples
7.3. DSP Builder DDC Design Example
7.4. DSP Builder Filter Design Examples
7.5. DSP Builder Finite State Machine Design Example
7.6. DSP Builder Folding Design Examples
7.7. DSP Builder Floating Point Design Examples
7.8. DSP Builder Flow Control Design Examples
7.9. DSP Builder HDL Import Design Example
7.10. DSP Builder Host Interface Design Examples
7.11. DSP Builder Platform Design Examples
7.12. DSP Builder Primitive Block Design Examples
7.13. DSP Builder Reference Designs
7.14. DSP Builder Waveform Synthesis Design Examples
7.2.1. FFT
7.2.2. FFT without BitReverseCoreC Block
7.2.3. IFFT
7.2.4. IFFT without BitReverseCoreC Block
7.2.5. Floating-Point FFT
7.2.6. Floating-Point FFT without BitReverseCoreC Block
7.2.7. Floating-Point iFFT
7.2.8. Floating-Point iFFT without BitReverseCoreC Block
7.2.9. Multichannel FFT
7.2.10. Multiwire Transpose
7.2.11. Parallel FFT
7.2.12. Parallel Floating-Point FFT
7.2.13. Single-Wire Transpose
7.2.14. Switchable FFT/iFFT
7.2.15. Variable-Size Fixed-Point FFT
7.2.16. Variable-Size Fixed-Point FFT without BitReverseCoreC Block
7.2.17. Variable-Size Fixed-Point iFFT
7.2.18. Variable-Size Fixed-Point iFFT without BitReverseCoreC Block
7.2.19. Variable-Size Floating-Point FFT
7.2.20. Variable-Size Floating-Point FFT without BitReverseCoreC Block
7.2.21. Variable-Size Floating-Point iFFT
7.2.22. Variable-Size Floating-Point iFFT without BitReverseCoreC Block
7.2.23. Variable-Size Low-Resource FFT
7.2.24. Variable-Size Low-Resource Real-Time FFT
7.2.25. Variable-Size Supersampled FFT
7.4.1. Complex FIR Filter
7.4.2. Decimating CIC Filter
7.4.3. Decimating FIR Filter
7.4.4. Filter Chain with Forward Flow Control
7.4.5. FIR Filter with Exposed Bus
7.4.6. Fractional FIR Filter Chain
7.4.7. Fractional-Rate FIR Filter
7.4.8. Half-Band FIR Filter
7.4.9. IIR: Full-rate Fixed-point
7.4.10. IIR: Full-rate Floating-point
7.4.11. Interpolating CIC Filter
7.4.12. Interpolating FIR Filter
7.4.13. Interpolating FIR Filter with Multiple Coefficient Banks
7.4.14. Interpolating FIR Filter with Updating Coefficient Banks
7.4.15. Root-Raised Cosine FIR Filter
7.4.16. Single-Rate FIR Filter
7.4.17. Super-Sample Decimating FIR Filter
7.4.18. Super-Sample Fractional FIR Filter
7.4.19. Super-Sample Interpolating FIR Filter
7.4.20. Variable-Rate CIC Filter
7.7.1. Black-Scholes Floating Point
7.7.2. Double-Precision Real Floating-Point Matrix Multiply
7.7.3. Fine Doppler Estimator
7.7.4. Floating-Point Mandlebrot Set
7.7.5. General Real Matrix Multiply One Cycle Per Output
7.7.6. Newton Root Finding Tutorial Step 1—Iteration
7.7.7. Newton Root Finding Tutorial Step 2—Convergence
7.7.8. Newton Root Finding Tutorial Step 3—Valid
7.7.9. Newton Root Finding Tutorial Step 4—Control
7.7.10. Newton Root Finding Tutorial Step 5—Final
7.7.11. Normalizer
7.7.12. Single-Precision Complex Floating-Point Matrix Multiply
7.7.13. Single-Precision Real Floating-Point Matrix Multiply
7.7.14. Simple Nonadaptive 2D Beamformer
7.8.1. Avalon-ST Interface (Input and Output FIFO Buffer) with Backpressure
7.8.2. Avalon-ST Interface (Output FIFO Buffer) with Backpressure
7.8.3. Kronecker Tensor Product
7.8.4. Parallel Loops
7.8.5. Primitive FIR with Back Pressure
7.8.6. Primitive FIR with Forward Pressure
7.8.7. Primitive Systolic FIR with Forward Flow Control
7.8.8. Rectangular Nested Loop
7.8.9. Sequential Loops
7.8.10. Triangular Nested Loop
7.12.1. 8×8 Inverse Discrete Cosine Transform
7.12.2. Automatic Gain Control
7.12.3. Bit Combine for Boolean Vectors
7.12.4. Bit Extract for Boolean Vectors
7.12.5. Color Space Converter
7.12.6. CORDIC from Primitive Blocks
7.12.7. Digital Predistortion Forward Path
7.12.8. Fibonacci Series
7.12.9. Folded Vector Sort
7.12.10. Fractional Square Root Using CORDIC
7.12.11. Fixed-point Maths Functions
7.12.12. Gaussian Random Number Generator
7.12.13. Hello World
7.12.14. Hybrid Direct Form and Transpose Form FIR Filter
7.12.15. Loadable Counter
7.12.16. Matrix Initialization of LUT
7.12.17. Matrix Initialization of Vector Memories
7.12.18. Multichannel IIR Filter
7.12.19. Quadrature Amplitude Modulation
7.12.20. Reinterpret Cast for Bit Packing and Unpacking
7.12.21. Run-time Configurable Decimating and Interpolating Half-Rate FIR Filter
7.12.22. Square Root Using CORDIC
7.12.23. Test CORDIC Functions with the CORDIC Block
7.12.24. Uniform Random Number Generator
7.12.25. Vector Sort—Sequential
7.12.26. Vector Sort—Iterative
7.12.27. Vector Initialization of Sample Delay
7.12.28. Wide Single-Channel Accumulators
7.13.1. 1-Antenna WiMAX DDC
7.13.2. 2-Antenna WiMAX DDC
7.13.3. 1-Antenna WiMAX DUC
7.13.4. 2-Antenna WiMAX DUC
7.13.5. 4-Carrier, 2-Antenna W-CDMA DDC
7.13.6. 1-Carrier, 2-Antenna W-CDMA DDC
7.13.7. 4-Carrier, 2-Antenna W-CDMA DUC
7.13.8. 4-Carrier, 4-Antenna DUC and DDC for LTE
7.13.9. 1-Carrier, 2-Antenna W-CDMA DDC
7.13.10. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 368.64 MHz with Total Rate Change 32
7.13.11. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 368.64 MHz with Total Rate Change 48
7.13.12. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 307.2 MHz with Total Rate Change 40
7.13.13. Cholesky-based Matrix Inversion
7.13.14. Cholesky Solver Multiple Channels
7.13.15. Crest Factor Reduction
7.13.16. Direct RF with Synthesizable Testbench
7.13.17. Dynamic Decimating FIR Filter
7.13.18. Multichannel QR Decompostion
7.13.19. QR Decompostion
7.13.20. QRD Solver
7.13.21. Reconfigurable Decimation Filter
7.13.22. Single-Channel 10-MHz LTE Transmitter
7.13.23. STAP Radar Forward and Backward Substitution
7.13.24. STAP Radar Steering Generation
7.13.25. STAP Radar QR Decomposition 192x204
7.13.26. Time Delay Beamformer
7.13.27. Transmit and Receive Modem
7.13.28. Variable Integer Rate Decimation Filter
9.1. Associating DSP Builder with MATLAB
9.2. Setting Up Simulink for DSP Builder Designs
9.3. The DSP Builder Windows Shortcut
9.4. Setting DSP Builder Design Parameters with MATLAB Scripts
9.5. Managing your Designs
9.6. How to Manage Latency
9.7. Flow Control in DSP Builder Designs
9.8. Reset Minimization
9.9. About Importing HDL
11.1. DSP Builder Floating-Point Data Type Features
11.2. DSP Builder Supported Floating-Point Data Types
11.3. DSP Builder Round-Off Errors
11.4. Trading Off Logic Utilization and Accuracy in DSP Builder Designs
11.5. Upgrading Pre v14.0 Designs
11.6. Floating-Point Sine Wave Generator Tutorial
11.7. Newton-Raphson Root Finding Tutorial
11.8. Forcing Soft Floating-point Data Types with the Advanced Options
13.1.1. DSP Builder FIR and CIC Filters
13.1.2. DSP Builder FIR Filters
13.1.3. Channel Viewer (ChanView)
13.1.4. Complex Mixer (ComplexMixer)
13.1.5. Decimating CIC
13.1.6. Decimating FIR
13.1.7. Fractional Rate FIR
13.1.8. Interpolating CIC
13.1.9. Interpolating FIR
13.1.10. NCO
13.1.11. Real Mixer (Mixer)
13.1.12. Scale
13.1.13. Single-Rate FIR
14.1.1. Bus Slave (BusSlave)
14.1.2. Bus Stimulus (BusStimulus)
14.1.3. Bus Stimulus File Reader (Bus StimulusFileReader)
14.1.4. External Memory, Memory Read, Memory Write
14.1.5. Register Bit (RegBit)
14.1.6. Register Field (RegField)
14.1.7. Register Out (RegOut)
14.1.8. Shared Memory (SharedMem)
15.3.1. About Pruning and Twiddle for FFT Blocks
15.3.2. Bit Vector Combine (BitVectorCombine)
15.3.3. Butterfly Unit (BFU)
15.3.4. Butterfly I C (BFIC) (Deprecated)
15.3.5. Butterfly II C (BFIIC) (Deprecated)
15.3.6. Choose Bits (ChooseBits)
15.3.7. Crossover Switch (XSwitch)
15.3.8. Dual Twiddle Memory (DualTwiddleMemoryC)
15.3.9. Edge Detect (EdgeDetect)
15.3.10. Floating-Point Twiddle Generator (TwiddleGenF) (Deprecated)
15.3.11. Fully-Parallel FFTs (FFT2P, FFT4P, FFT8P, FFT16P, FFT32P, and FFT64P)
15.3.12. Fully-Parallel FFTs with Flexible Ordering (FFT2X, FFT4X, FFT8X, FFT16X, FFT32X, and FFT64X)
15.3.13. General Multitwiddle and General Twiddle (GeneralMultiTwiddle, GeneralMultVTwiddle, GeneralTwiddle, GeneralVTwiddle)
15.3.14. Hybrid FFT (Hybrid_FFT, HybridVFFT, HybridVFFT_btb)
15.3.15. Multiwire Transpose (MultiwireTranspose)
15.3.16. Parallel Pipelined FFT (PFFT_Pipe)
15.3.17. Pulse Divider (PulseDivider)
15.3.18. Pulse Multiplier (PulseMultiplier)
15.3.19. Single-Wire Transpose (Transpose)
15.3.20. Split Scalar (SplitScalar)
15.3.21. Streaming FFTs (FFT2, FFT4, VFFT2, and VFFT4)
15.3.22. Stretch Pulse (StretchPulse)
15.3.23. Twiddle Angle (TwiddleAngle)
15.3.24. Twiddle Generator (TwiddleGenC) Deprecated
15.3.25. Twiddle and Variable Twiddle (Twiddle and VTwiddle)
15.3.26. Twiddle ROM (TwiddleRom, TwiddleMultRom and TwiddleRomF (deprecated))
15.4.1. Absolute Value (Abs)
15.4.2. Accumulator (Acc)
15.4.3. Add
15.4.4. Add SLoad (AddSLoad)
15.4.5. AddSub
15.4.6. AddSubFused
15.4.7. AND Gate (And)
15.4.8. Bit Combine (BitCombine)
15.4.9. Bit Extract (BitExtract)
15.4.10. Bit Reverse (BitReverse)
15.4.11. Compare (CmpCtrl)
15.4.12. Complex Conjugate (ComplexConjugate)
15.4.13. Compare Equality (CmpEQ)
15.4.14. Compare Greater Than (CmpGE)
15.4.15. Compare Less Than (CmpLT)
15.4.16. Compare Not Equal (CmpNE)
15.4.17. Constant (Const)
15.4.18. Constant Multiply (Const Mult)
15.4.19. Convert
15.4.20. CORDIC
15.4.21. Counter
15.4.22. Count Leading Zeros, Ones, or Sign Bits (CLZ)
15.4.23. Dual Memory (DualMem)
15.4.24. Demultiplexer (Demux)
15.4.25. Divide
15.4.26. Fanout
15.4.27. FIFO
15.4.28. Floating-point Classifier (FloatClass)
15.4.29. Floating-point Multiply Accumulate (MultAcc)
15.4.30. ForLoop
15.4.31. Load Exponent (LdExp)
15.4.32. Left Shift (LShift)
15.4.33. Loadable Counter (LoadableCounter)
15.4.34. Look-Up Table (Lut)
15.4.35. Loop
15.4.36. Math
15.4.37. Minimum and Maximum (MinMax)
15.4.38. MinMaxCtrl
15.4.39. Multiply (Mult)
15.4.40. Multiplexer (Mux)
15.4.41. NAND Gate (Nand)
15.4.42. Negate
15.4.43. NOR Gate (Nor)
15.4.44. NOT Gate (Not)
15.4.45. OR Gate (Or)
15.4.46. Polynomial
15.4.47. Ready
15.4.48. Reinterpret Cast (ReinterpretCast)
15.4.49. Round
15.4.50. Sample Delay (SampleDelay)
15.4.51. Scalar Product
15.4.52. Select
15.4.53. Sequence
15.4.54. Shift
15.4.55. Sqrt
15.4.56. Subtract (Sub)
15.4.57. Sum of Elements (SumOfElements)
15.4.58. Trig
15.4.59. XNOR Gate (Xnor)
15.4.60. XOR Gate (Xor)
15.6.1. Anchored Delay
15.6.2. Complex to Real-Imag
15.6.3. Enabled Delay Line
15.6.4. Enabled Feedback Delay
15.6.5. Expand Scalar (ExpandScalar)
15.6.6. Finite State Machine
15.6.7. Nested Loops (NestedLoop1, NestedLoop2, NestedLoop3)
15.6.8. Pause
15.6.9. Reset-Priority Latch (SRlatch_PS)
15.6.10. Same Data Type (SameDT)
15.6.11. Set-Priority Latch (SRlatch)
15.6.12. Single-Cycle Latency Latch (latch_1L)
15.6.13. Tapped Line Delay (TappedLineDelay)
15.6.14. Variable Super-Sample Delay (VariableDelay)
15.6.15. Vector Fanout (VectorFanout)
15.6.16. Vector Multiplexer (VectorMux)
15.6.17. Zero-Latency Latch (latch_0L)
Visible to Intel only — GUID: hco1423077060891
Ixiasoft
13.1.1.2. Updated Help
After you run a simulation, DSP Builder updates the help pages with specific information about each instance of a block. This updated help overrides the default help link. To find the updated help click on the help link on the block after simulation.
This updated help includes a link back to the help for the general block and the following information about the generated FIR instance:
- Date and time of generation
- The version number and revision for the FIR
- Number of physical input and output data buses
- Bit width of data output.
- Number of different phases
- Implementation folding. The number of times that the design uses each multiplier per sample to reduce the implementation size.
- Filter utilization. For some sample rates and some interpolation/decimation settings, the filter may stall internally one or more cycles. The filter utilization is the percentage of time that the filter is actively working, assuming that the input arrives at the specified data rate.
- Tap utilization. When some filters are folded, the design may have extra unused taps. The extra taps increase the filter length with no hardware resource increase.
- Latency. The depth of pipelining added to the block to meet the target clock frequency on the chosen target device.
- Parameters table that lists the system clock, clock margin, and all FIR input parameters.
- Port interface table.
- Input and output data format. An ASCII rendering of the input and output channelized data ordering.
The updated help includes the following information about the CIC instance:
- Date and time of generation
- The version number and revision for the CIC
- Number of integrators. Depending on the input data rate and interpolation factor the number of integrator stages DSP Builder needs to process the data may be more than 1. In these instances, the integrator sections of the filter duplicate (vectorize) to satisfy the data rate requirement.
- Calculated output bit width. The width in bits of the (vectorized) data output from the filter.
- Calculated stage bit widths. Each stage in the filter has precise width in bits requirements—N comb sections followed by N integrator sections.
- The gain through the CIC filter. CIC filters usually have large gains that you must scale back.
- Comb section utilization. In the comb section, the data rate is lower, so that you can perform more resource sharing. This message indicates the efficiency of the subtractor usage.
- Integrator section utilization. In the integrator section, the data rate is higher, so that you can perform less resource sharing. This message indicates the efficiency of the adder usage.
- The latency that this block introduces.
- Parameters table that lists the decimation rate, number of stages, differential delay, number of channels, clock frequency, and input sample rate parameters.
- Port interface table.
- Input and output data format.