Video and Vision Processing Suite Intel® FPGA IP User Guide

ID 683329
Date 10/02/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents
1. About the Video and Vision Processing Suite 2. Getting Started with the Video and Vision Processing IPs 3. Video and Vision Processing IPs Functional Description 4. Video and Vision Processing IP Interfaces 5. Video and Vision Processing IP Registers 6. Video and Vision Processing IPs Software Programming Model 7. Protocol Converter Intel® FPGA IP 8. 3D LUT Intel® FPGA IP 9. AXI-Stream Broadcaster Intel® FPGA IP 10. Bits per Color Sample Adapter Intel FPGA IP 11. Chroma Key Intel® FPGA IP 12. Chroma Resampler Intel® FPGA IP 13. Clipper Intel® FPGA IP 14. Clocked Video Input Intel® FPGA IP 15. Clocked Video to Full-Raster Converter Intel® FPGA IP 16. Clocked Video Output Intel® FPGA IP 17. Color Space Converter Intel® FPGA IP 18. Deinterlacer Intel® FPGA IP 19. FIR Filter Intel® FPGA IP 20. Frame Cleaner Intel® FPGA IP 21. Full-Raster to Clocked Video Converter Intel® FPGA IP 22. Full-Raster to Streaming Converter Intel® FPGA IP 23. Genlock Controller Intel® FPGA IP 24. Generic Crosspoint Intel® FPGA IP 25. Genlock Signal Router Intel® FPGA IP 26. Guard Bands Intel® FPGA IP 27. Interlacer Intel® FPGA IP 28. Mixer Intel® FPGA IP 29. Pixels in Parallel Converter Intel® FPGA IP 30. Scaler Intel® FPGA IP 31. Stream Cleaner Intel® FPGA IP 32. Switch Intel® FPGA IP 33. Tone Mapping Operator Intel® FPGA IP 34. Test Pattern Generator Intel® FPGA IP 35. Video and Vision Monitor Intel FPGA IP 36. Video Frame Buffer Intel® FPGA IP 37. Video Frame Reader Intel FPGA IP 38. Video Frame Writer Intel FPGA IP 39. Video Streaming FIFO Intel® FPGA IP 40. Video Timing Generator Intel® FPGA IP 41. Warp Intel® FPGA IP 42. Design Security 43. Document Revision History for Video and Vision Processing Suite User Guide

42.2. Considering Design Security

When designing the systems based on video and vision processing IPs always conduct a security review of your final design to ensure it meets your security goals.
You can apply these precautions to production or deployed systems. Not all precautions apply to all designs or IPs.
  1. Remove the JTAG interface from your designs.
  2. To guarantee video data integrity, restrict access to memory allocated to the frame buffer.
  3. Control access to areas of memory to prevent unauthorized transactions or corruption by other IPs in the design.
  4. Ensure that you correctly configure the IP via the I²C interface and that the input video is valid.
  5. Protect the bitstreams for your design using the security features built-in to Intel Quartus Prime.
  6. Enable a password for the design’s ARM processor.
  7. Protect access to your design through development kit ports.
  8. Restrict debugging access by tools such as Signal Tap.
  9. Encrypt information on SD cards, FPGA bitstreams, and within DDR memory devices.
  10. Apply security features to stored video data.
  11. Consider using an HDCP encryption scheme.
  12. Consider the boot sequence and boot security aspects of your own design.
  13. Implement Intel’s FPGA bitstream encryption technology to further protect the FPGA design content of your products. For information on FPGA bitstream encryption technology, refer to Using the Design Security Features in Intel FPGAs.