Visible to Intel only — GUID: zkt1583213700574
Ixiasoft
Recommended Operating Conditions
E-Tile Transceiver Power Supply Recommended Operating Conditions
P-Tile Transceiver Power Supply Recommended Operating Conditions
R-Tile Transceiver Power Supply Recommended Operating Conditions
F-Tile Transceiver Power Supply Recommended Operating Conditions
HPS Power Supply Recommended Operating Conditions
Single-Ended I/O Standards Specifications
Single-Ended SSTL, HSTL, HSUL, and POD I/O Reference Voltage Specifications
Single-Ended SSTL, HSTL, HSUL, and POD I/O Standards Signal Specifications
Differential SSTL, HSTL, and HSUL I/O Standards Specifications
Differential POD I/O Standards Specifications
Differential I/O Standards Specifications
HPS Clock Performance
HPS Internal Oscillator Frequency
HPS PLL Specifications
HPS Cold Reset
HPS SPI Timing Characteristics
HPS SD/MMC Timing Characteristics
HPS USB UPLI Timing Characteristics
HPS Ethernet Media Access Controller (EMAC) Timing Characteristics
HPS I2C Timing Characteristics
HPS NAND Timing Characteristics
HPS Trace Timing Characteristics
HPS GPIO Interface
HPS JTAG Timing Characteristics
HPS Programmable I/O Timing Characteristics
Visible to Intel only — GUID: zkt1583213700574
Ixiasoft
I/O Timing
I/O timing data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the timing analysis. You may generate the I/O timing report manually using the Timing Analyzer.
The Intel® Quartus® Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.