Visible to Intel only — GUID: GUID-D9550783-A623-42CA-AD67-F42DB54DDC36
ZHEEVR Example Program in C
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
ZHEEVR Example.
==============
Program computes eigenvalues specified by a selected range of values
and corresponding eigenvectors of a complex Hermitian matrix A using the
Relatively Robust Representations, where A is:
( -2.16, 0.00) ( -0.16, -4.86) ( -7.23, -9.38) ( -0.04, 6.86)
( -0.16, 4.86) ( 7.45, 0.00) ( 4.39, 6.29) ( -8.11, -4.41)
( -7.23, 9.38) ( 4.39, -6.29) ( -9.03, 0.00) ( -6.89, -7.66)
( -0.04, -6.86) ( -8.11, 4.41) ( -6.89, 7.66) ( 7.76, 0.00)
Description.
============
The routine computes selected eigenvalues and, optionally, eigenvectors of
an n-by-n complex Hermitian matrix A. The eigenvector v(j) of A satisfies
A*v(j) = lambda(j)*v(j)
where lambda(j) is its eigenvalue. The computed eigenvectors are
orthonormal.
Eigenvalues and eigenvectors can be selected by specifying either a range
of values or a range of indices for the desired eigenvalues.
Example Program Results.
========================
ZHEEVR Example Program Results
The total number of eigenvalues found: 2
Selected eigenvalues
-4.18 3.57
Selected eigenvectors (stored columnwise)
( 0.68, 0.00) ( 0.38, 0.00)
( 0.03, 0.18) ( 0.54, -0.57)
( -0.03, 0.21) ( -0.40, 0.04)
( 0.20, 0.64) ( -0.14, -0.26)
*/
#include <stdlib.h>
#include <stdio.h>
/* Complex datatype */
struct _dcomplex { double re, im; };
typedef struct _dcomplex dcomplex;
/* ZHEEVR prototype */
extern void zheevr( char* jobz, char* range, char* uplo, int* n, dcomplex* a,
int* lda, double* vl, double* vu, int* il, int* iu, double* abstol,
int* m, double* w, dcomplex* z, int* ldz, int* isuppz, dcomplex* work,
int* lwork, double* rwork, int* lrwork, int* iwork, int* liwork,
int* info );
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, int m, int n, dcomplex* a, int lda );
extern void print_rmatrix( char* desc, int m, int n, double* a, int lda );
/* Parameters */
#define N 4
#define LDA N
#define LDZ N
/* Main program */
int main() {
/* Locals */
int n = N, lda = LDA, ldz = LDZ, il, iu, m, info, lwork, lrwork, liwork;
double abstol, vl, vu;
int iwkopt;
int* iwork;
double rwkopt;
double* rwork;
dcomplex wkopt;
dcomplex* work;
/* Local arrays */
int isuppz[N];
double w[N];
dcomplex z[LDZ*N];
dcomplex a[LDA*N] = {
{-2.16, 0.00}, {-0.16, 4.86}, {-7.23, 9.38}, {-0.04, -6.86},
{ 0.00, 0.00}, { 7.45, 0.00}, { 4.39, -6.29}, {-8.11, 4.41},
{ 0.00, 0.00}, { 0.00, 0.00}, {-9.03, 0.00}, {-6.89, 7.66},
{ 0.00, 0.00}, { 0.00, 0.00}, { 0.00, 0.00}, { 7.76, 0.00}
};
/* Executable statements */
printf( " ZHEEVR Example Program Results\n" );
/* Negative abstol means using the default value */
abstol = -1.0;
/* Set VL, VU to compute eigenvalues in half-open (VL,VU] interval */
vl = -5.0;
vu = 5.0;
/* Query and allocate the optimal workspace */
lwork = -1;
lrwork = -1;
liwork = -1;
zheevr( "Vectors", "Values", "Lower", &n, a, &lda, &vl, &vu, &il, &iu,
&abstol, &m, w, z, &ldz, isuppz, &wkopt, &lwork, &rwkopt, &lrwork,
&iwkopt, &liwork, &info );
lwork = (int)wkopt.re;
work = (dcomplex*)malloc( lwork*sizeof(dcomplex) );
lrwork = (int)rwkopt;
rwork = (double*)malloc( lrwork*sizeof(double) );
liwork = iwkopt;
iwork = (int*)malloc( liwork*sizeof(int) );
/* Solve eigenproblem */
zheevr( "Vectors", "Values", "Lower", &n, a, &lda, &vl, &vu, &il, &iu,
&abstol, &m, w, z, &ldz, isuppz, work, &lwork, rwork, &lrwork,
iwork, &liwork, &info );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm failed to compute eigenvalues.\n" );
exit( 1 );
}
/* Print the number of eigenvalues found */
printf( "\n The total number of eigenvalues found:%2i\n", m );
/* Print eigenvalues */
print_rmatrix( "Selected eigenvalues", 1, m, w, 1 );
/* Print eigenvectors */
print_matrix( "Selected eigenvectors (stored columnwise)", n, m, z, ldz );
/* Free workspace */
free( (void*)iwork );
free( (void*)rwork );
free( (void*)work );
exit( 0 );
} /* End of ZHEEVR Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, int m, int n, dcomplex* a, int lda ) {
int i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i+j*lda].re, a[i+j*lda].im );
printf( "\n" );
}
}
/* Auxiliary routine: printing a real matrix */
void print_rmatrix( char* desc, int m, int n, double* a, int lda ) {
int i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i+j*lda] );
printf( "\n" );
}
}
Parent topic: ZHEEVR Example