Developer Reference

Intel® oneAPI Math Kernel Library LAPACK Examples

ID 766877
Date 10/31/2024
Public
Document Table of Contents

LAPACK_sgesv Example Program in C for Column Major Data Layout

/*******************************************************************************
*  Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
*  The information and material ("Material") provided below is owned by Intel
*  Corporation or its suppliers or licensors, and title to such Material remains
*  with Intel Corporation or its suppliers or licensors. The Material contains
*  proprietary information of Intel or its suppliers and licensors. The Material
*  is protected by worldwide copyright laws and treaty provisions. No part of
*  the Material may be copied, reproduced, published, uploaded, posted,
*  transmitted, or distributed in any way without Intel's prior express written
*  permission. No license under any patent, copyright or other intellectual
*  property rights in the Material is granted to or conferred upon you, either
*  expressly, by implication, inducement, estoppel or otherwise. Any license
*  under such intellectual property rights must be express and approved by Intel
*  in writing.
*
********************************************************************************
*/
/*
   LAPACKE_sgesv Example.
   ======================
 
   The program computes the solution to the system of linear
   equations with a square matrix A and multiple
   right-hand sides B, where A is the coefficient matrix:
 
     6.80  -6.05  -0.45   8.32  -9.67
    -2.11  -3.30   2.58   2.71  -5.14
     5.66   5.36  -2.70   4.35  -7.26
     5.97  -4.44   0.27  -7.17   6.08
     8.23   1.08   9.04   2.14  -6.87

   and B is the right-hand side matrix:
 
     4.02  -1.56   9.81
     6.19   4.00  -4.09
    -8.22  -8.67  -4.57
    -7.57   1.75  -8.61
    -3.03   2.86   8.99
 
   Description.
   ============
 
   The routine solves for X the system of linear equations A*X = B,
   where A is an n-by-n matrix, the columns of matrix B are individual
   right-hand sides, and the columns of X are the corresponding
   solutions.

   The LU decomposition with partial pivoting and row interchanges is
   used to factor A as A = P*L*U, where P is a permutation matrix, L
   is unit lower triangular, and U is upper triangular. The factored
   form of A is then used to solve the system of equations A*X = B.

   Example Program Results.
   ========================
 
 LAPACKE_sgesv (column-major, high-level) Example Program Results

 Solution
  -0.80  -0.39   0.96
  -0.70  -0.55   0.22
   0.59   0.84   1.90
   1.32  -0.10   5.36
   0.57   0.11   4.04

 Details of LU factorization
   8.23   1.08   9.04   2.14  -6.87
   0.83  -6.94  -7.92   6.55  -3.99
   0.69  -0.67 -14.18   7.24  -5.19
   0.73   0.75   0.02 -13.82  14.19
  -0.26   0.44  -0.59  -0.34  -3.43

 Pivot indices
      5      5      3      4      5
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"

/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda );
extern void print_int_vector( char* desc, MKL_INT n, MKL_INT* a );

/* Parameters */
#define N 5
#define NRHS 3
#define LDA N
#define LDB N

/* Main program */
int main() {
        /* Locals */
        MKL_INT n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;
        /* Local arrays */
        MKL_INT ipiv[N];
        float a[LDA*N] = {
            6.80f, -2.11f,  5.66f,  5.97f,  8.23f,
           -6.05f, -3.30f,  5.36f, -4.44f,  1.08f,
           -0.45f,  2.58f, -2.70f,  0.27f,  9.04f,
            8.32f,  2.71f,  4.35f, -7.17f,  2.14f,
           -9.67f, -5.14f, -7.26f,  6.08f, -6.87f
        };
        float b[LDB*NRHS] = {
            4.02f,  6.19f, -8.22f, -7.57f, -3.03f,
           -1.56f,  4.00f, -8.67f,  1.75f,  2.86f,
            9.81f, -4.09f, -4.57f, -8.61f,  8.99f
        };
        /* Executable statements */
        printf( "LAPACKE_sgesv (column-major, high-level) Example Program Results\n" );
        /* Solve the equations A*X = B */
        info = LAPACKE_sgesv( LAPACK_COL_MAJOR, n, nrhs, a, lda, ipiv,
                        b, ldb );
        /* Check for the exact singularity */
        if( info > 0 ) {
                printf( "The diagonal element of the triangular factor of A,\n" );
                printf( "U(%i,%i) is zero, so that A is singular;\n", info, info );
                printf( "the solution could not be computed.\n" );
                exit( 1 );
        }
        /* Print solution */
        print_matrix( "Solution", n, nrhs, b, ldb );
        /* Print details of LU factorization */
        print_matrix( "Details of LU factorization", n, n, a, lda );
        /* Print pivot indices */
        print_int_vector( "Pivot indices", n, ipiv );
        exit( 0 );
} /* End of LAPACKE_sgesv Example */

/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda ) {
        MKL_INT i, j;
        printf( "\n %s\n", desc );
        for( i = 0; i < m; i++ ) {
                for( j = 0; j < n; j++ ) printf( " %6.2f", a[i+j*lda] );
                printf( "\n" );
        }
}

/* Auxiliary routine: printing a vector of integers */
void print_int_vector( char* desc, MKL_INT n, MKL_INT* a ) {
        MKL_INT j;
        printf( "\n %s\n", desc );
        for( j = 0; j < n; j++ ) printf( " %6i", a[j] );
        printf( "\n" );
}