Visible to Intel only — GUID: GUID-EECBB603-BB53-4189-83A6-F0D7D7DFD386
SGESV Example Program in Fortran
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
* =============================================================================
*
* SGESV Example.
* ==============
*
* The program computes the solution to the system of linear
* equations with a square matrix A and multiple
* right-hand sides B, where A is the coefficient matrix:
*
* 6.80 -6.05 -0.45 8.32 -9.67
* -2.11 -3.30 2.58 2.71 -5.14
* 5.66 5.36 -2.70 4.35 -7.26
* 5.97 -4.44 0.27 -7.17 6.08
* 8.23 1.08 9.04 2.14 -6.87
*
* and B is the right-hand side matrix:
*
* 4.02 -1.56 9.81
* 6.19 4.00 -4.09
* -8.22 -8.67 -4.57
* -7.57 1.75 -8.61
* -3.03 2.86 8.99
*
* Description.
* ============
*
* The routine solves for X the system of linear equations A*X = B,
* where A is an n-by-n matrix, the columns of matrix B are individual
* right-hand sides, and the columns of X are the corresponding
* solutions.
*
* The LU decomposition with partial pivoting and row interchanges is
* used to factor A as A = P*L*U, where P is a permutation matrix, L
* is unit lower triangular, and U is upper triangular. The factored
* form of A is then used to solve the system of equations A*X = B.
*
* Example Program Results.
* ========================
*
* SGESV Example Program Results
*
* Solution
* -0.80 -0.39 0.96
* -0.70 -0.55 0.22
* 0.59 0.84 1.90
* 1.32 -0.10 5.36
* 0.57 0.11 4.04
*
* Details of LU factorization
* 8.23 1.08 9.04 2.14 -6.87
* 0.83 -6.94 -7.92 6.55 -3.99
* 0.69 -0.67 -14.18 7.24 -5.19
* 0.73 0.75 0.02 -13.82 14.19
* -0.26 0.44 -0.59 -0.34 -3.43
*
* Pivot indices
* 5 5 3 4 5
* =============================================================================
*
* .. Parameters ..
INTEGER N, NRHS
PARAMETER ( N = 5, NRHS = 3 )
INTEGER LDA, LDB
PARAMETER ( LDA = N, LDB = N )
*
* .. Local Scalars ..
INTEGER INFO
*
* .. Local Arrays ..
INTEGER IPIV( N )
REAL A( LDA, N ), B( LDB, NRHS )
DATA A/
$ 6.80,-2.11, 5.66, 5.97, 8.23,
$ -6.05,-3.30, 5.36,-4.44, 1.08,
$ -0.45, 2.58,-2.70, 0.27, 9.04,
$ 8.32, 2.71, 4.35,-7.17, 2.14,
$ -9.67,-5.14,-7.26, 6.08,-6.87
$ /
DATA B/
$ 4.02, 6.19,-8.22,-7.57,-3.03,
$ -1.56, 4.00,-8.67, 1.75, 2.86,
$ 9.81,-4.09,-4.57,-8.61, 8.99
$ /
*
* .. External Subroutines ..
EXTERNAL SGESV
EXTERNAL PRINT_MATRIX, PRINT_INT_VECTOR
*
* .. Executable Statements ..
WRITE(*,*)'SGESV Example Program Results'
*
* Solve the equations A*X = B.
*
CALL SGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
* Check for the exact singularity.
*
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The diagonal element of the triangular factor of A,'
WRITE(*,*)'U(',INFO,',',INFO,') is zero, so that'
WRITE(*,*)'A is singular; the solution could not be computed.'
STOP
END IF
*
* Print solution.
*
CALL PRINT_MATRIX( 'Solution', N, NRHS, B, LDB )
*
* Print details of LU factorization.
*
CALL PRINT_MATRIX( 'Details of LU factorization', N, N, A, LDA )
*
* Print pivot indices.
*
CALL PRINT_INT_VECTOR( 'Pivot indices', N, IPIV )
STOP
END
*
* End of SGESV Example.
*
* =============================================================================
*
* Auxiliary routine: printing a matrix.
*
SUBROUTINE PRINT_MATRIX( DESC, M, N, A, LDA )
CHARACTER*(*) DESC
INTEGER M, N, LDA
REAL A( LDA, * )
*
INTEGER I, J
*
WRITE(*,*)
WRITE(*,*) DESC
DO I = 1, M
WRITE(*,9998) ( A( I, J ), J = 1, N )
END DO
*
9998 FORMAT( 11(:,1X,F6.2) )
RETURN
END
*
* Auxiliary routine: printing a vector of integers.
*
SUBROUTINE PRINT_INT_VECTOR( DESC, N, A )
CHARACTER*(*) DESC
INTEGER N
INTEGER A( N )
*
INTEGER I
*
WRITE(*,*)
WRITE(*,*) DESC
WRITE(*,9999) ( A( I ), I = 1, N )
*
9999 FORMAT( 11(:,1X,I6) )
RETURN
END
Parent topic: SGESV Example