Visible to Intel only — GUID: GUID-96D9EC3C-0080-4A7A-BE97-FF305C1892B6
LAPACKE_ssyevr Example Program in C for Column Major Data Layout
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
LAPACKE_ssyevr Example.
=======================
Program computes the smallest eigenvalues and the corresponding
eigenvectors of a real symmetric matrix A using the Relatively Robust
Representations, where A is:
0.67 -0.20 0.19 -1.06 0.46
-0.20 3.82 -0.13 1.06 -0.48
0.19 -0.13 3.27 0.11 1.10
-1.06 1.06 0.11 5.86 -0.98
0.46 -0.48 1.10 -0.98 3.54
Description.
============
The routine computes selected eigenvalues and, optionally, eigenvectors of
an n-by-n real symmetric matrix A. The eigenvector v(j) of A satisfies
A*v(j) = lambda(j)*v(j)
where lambda(j) is its eigenvalue. The computed eigenvectors are
orthonormal.
Eigenvalues and eigenvectors can be selected by specifying either a range
of values or a range of indices for the desired eigenvalues.
Example Program Results.
========================
LAPACKE_ssyevr (column-major, high-level) Example Program Results
The total number of eigenvalues found: 3
Selected eigenvalues
0.43 2.14 3.37
Selected eigenvectors (stored columnwise)
-0.98 -0.01 -0.08
0.01 0.02 -0.93
0.04 -0.69 -0.07
-0.18 0.19 0.31
0.07 0.69 -0.13
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda );
/* Parameters */
#define N 5
#define NSELECT 3
#define LDA N
#define LDZ N
/* Main program */
int main() {
/* Locals */
MKL_INT n = N, il, iu, m, lda = LDA, ldz = LDZ, info;
float abstol, vl, vu;
/* Local arrays */
MKL_INT isuppz[N];
float w[N], z[LDZ*NSELECT];
float a[LDA*N] = {
0.67f, 0.00f, 0.00f, 0.00f, 0.00f,
-0.20f, 3.82f, 0.00f, 0.00f, 0.00f,
0.19f, -0.13f, 3.27f, 0.00f, 0.00f,
-1.06f, 1.06f, 0.11f, 5.86f, 0.00f,
0.46f, -0.48f, 1.10f, -0.98f, 3.54f
};
/* Executable statements */
printf( "LAPACKE_ssyevr (column-major, high-level) Example Program Results\n" );
/* Negative abstol means using the default value */
abstol = -1.0;
/* Set il, iu to compute NSELECT smallest eigenvalues */
il = 1;
iu = NSELECT;
/* Solve eigenproblem */
info = LAPACKE_ssyevr( LAPACK_COL_MAJOR, 'V', 'I', 'U', n, a, lda,
vl, vu, il, iu, abstol, &m, w, z, ldz, isuppz );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm failed to compute eigenvalues.\n" );
exit( 1 );
}
/* Print the number of eigenvalues found */
printf( "\n The total number of eigenvalues found:%2i\n", m );
/* Print eigenvalues */
print_matrix( "Selected eigenvalues", 1, m, w, 1 );
/* Print eigenvectors */
print_matrix( "Selected eigenvectors (stored columnwise)", n, m, z, ldz );
exit( 0 );
} /* End of LAPACKE_ssyevr Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i+j*lda] );
printf( "\n" );
}
}
Parent topic: SSYEVR Example