Developer Reference

Intel® oneAPI Math Kernel Library LAPACK Examples

ID 766877
Date 10/31/2024
Public
Document Table of Contents

CHEEVR Example Program in Fortran

* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved. * The information and material ("Material") provided below is owned by Intel * Corporation or its suppliers or licensors, and title to such Material remains * with Intel Corporation or its suppliers or licensors. The Material contains * proprietary information of Intel or its suppliers and licensors. The Material * is protected by worldwide copyright laws and treaty provisions. No part of * the Material may be copied, reproduced, published, uploaded, posted, * transmitted, or distributed in any way without Intel's prior express written * permission. No license under any patent, copyright or other intellectual * property rights in the Material is granted to or conferred upon you, either * expressly, by implication, inducement, estoppel or otherwise. Any license * under such intellectual property rights must be express and approved by Intel * in writing. * ============================================================================= * * CHEEVR Example. * ============== * * Program computes eigenvalues specified by a selected range of values * and corresponding eigenvectors of a complex Hermitian matrix A using the * Relatively Robust Representations, where A is: * * ( -2.16, 0.00) ( -0.16, -4.86) ( -7.23, -9.38) ( -0.04, 6.86) * ( -0.16, 4.86) ( 7.45, 0.00) ( 4.39, 6.29) ( -8.11, -4.41) * ( -7.23, 9.38) ( 4.39, -6.29) ( -9.03, 0.00) ( -6.89, -7.66) * ( -0.04, -6.86) ( -8.11, 4.41) ( -6.89, 7.66) ( 7.76, 0.00) * * Description. * ============ * * The routine computes selected eigenvalues and, optionally, eigenvectors of * an n-by-n complex Hermitian matrix A. The eigenvector v(j) of A satisfies * * A*v(j) = lambda(j)*v(j) * * where lambda(j) is its eigenvalue. The computed eigenvectors are * orthonormal. * Eigenvalues and eigenvectors can be selected by specifying either a range * of values or a range of indices for the desired eigenvalues. * * Example Program Results. * ======================== * * CHEEVR Example Program Results * * The total number of eigenvalues found: 2 * * Selected eigenvalues * -4.18 3.57 * * Selected eigenvectors (stored columnwise) * ( 0.68, 0.00) ( 0.38, 0.00) * ( 0.03, 0.18) ( 0.54, -0.57) * ( -0.03, 0.21) ( -0.40, 0.04) * ( 0.20, 0.64) ( -0.14, -0.26) * ============================================================================= * * .. Parameters .. INTEGER N PARAMETER ( N = 4 ) INTEGER LDA, LDZ PARAMETER ( LDA = N, LDZ = N ) INTEGER LWMAX PARAMETER ( LWMAX = 1000 ) * * .. Local Scalars .. INTEGER INFO, LWORK, LRWORK, LIWORK, IL, IU, M REAL ABSTOL, VL, VU * * .. Local Arrays .. INTEGER ISUPPZ( N ), IWORK( LWMAX ) REAL W( N ), RWORK( LWMAX ) COMPLEX A( LDA, N ), Z( LDZ, N ), WORK( LWMAX ) DATA A/ $ (-2.16, 0.00),(-0.16, 4.86),(-7.23, 9.38),(-0.04,-6.86), $ ( 0.00, 0.00),( 7.45, 0.00),( 4.39,-6.29),(-8.11, 4.41), $ ( 0.00, 0.00),( 0.00, 0.00),(-9.03, 0.00),(-6.89, 7.66), $ ( 0.00, 0.00),( 0.00, 0.00),( 0.00, 0.00),( 7.76, 0.00) $ / * * .. External Subroutines .. EXTERNAL CHEEVR EXTERNAL PRINT_MATRIX, PRINT_RMATRIX * * .. Intrinsic Functions .. INTRINSIC INT, MIN * * .. Executable Statements .. WRITE(*,*)'CHEEVR Example Program Results' * Negative ABSTOL means using the default value ABSTOL = -1.0 * Set VL, VU to compute eigenvalues in half-open (VL,VU] interval VL = -5.0 VU = 5.0 * * Query the optimal workspace. * LWORK = -1 LRWORK = -1 LIWORK = -1 CALL CHEEVR( 'Vectors', 'Values', 'Lower', N, A, LDA, VL, VU, IL, $ IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, RWORK, $ LRWORK, IWORK, LIWORK, INFO ) LWORK = MIN( LWMAX, INT( WORK( 1 ) ) ) LRWORK = MIN( LWMAX, INT( RWORK( 1 ) ) ) LIWORK = MIN( LWMAX, IWORK( 1 ) ) * * Solve eigenproblem. * CALL CHEEVR( 'Vectors', 'Values', 'Lower', N, A, LDA, VL, VU, IL, $ IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, RWORK, $ LRWORK, IWORK, LIWORK, INFO ) * * Check for convergence. * IF( INFO.GT.0 ) THEN WRITE(*,*)'The algorithm failed to compute eigenvalues.' STOP END IF * * Print the number of eigenvalues found. * WRITE(*,'(/A,I2)')' The total number of eigenvalues found:', M * * Print eigenvalues. * CALL PRINT_RMATRIX( 'Selected eigenvalues', 1, M, W, 1 ) * * Print eigenvectors. * CALL PRINT_MATRIX( 'Selected eigenvectors (stored columnwise)', $ N, M, Z, LDZ ) STOP END * * End of CHEEVR Example. * * ============================================================================= * * Auxiliary routine: printing a matrix. * SUBROUTINE PRINT_MATRIX( DESC, M, N, A, LDA ) CHARACTER*(*) DESC INTEGER M, N, LDA COMPLEX A( LDA, * ) * INTEGER I, J * WRITE(*,*) WRITE(*,*) DESC DO I = 1, M WRITE(*,9998) ( A( I, J ), J = 1, N ) END DO * 9998 FORMAT( 11(:,1X,'(',F6.2,',',F6.2,')') ) RETURN END * * Auxiliary routine: printing a real matrix. * SUBROUTINE PRINT_RMATRIX( DESC, M, N, A, LDA ) CHARACTER*(*) DESC INTEGER M, N, LDA REAL A( LDA, * ) * INTEGER I, J * WRITE(*,*) WRITE(*,*) DESC DO I = 1, M WRITE(*,9998) ( A( I, J ), J = 1, N ) END DO * 9998 FORMAT( 11(:,1X,F6.2) ) RETURN END