Visible to Intel only — GUID: GUID-98B95710-EF35-4D29-A2EF-A1C7B295B05D
LAPACKE_cgesv Example Program in C for Row Major Data Layout
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
LAPACKE_cgesv Example.
======================
The program computes the solution to the system of linear
equations with a square matrix A and multiple
right-hand sides B, where A is the coefficient matrix:
( 1.23, -5.50) ( 7.91, -5.38) ( -9.80, -4.86) ( -7.32, 7.57)
( -2.14, -1.12) ( -9.92, -0.79) ( -9.18, -1.12) ( 1.37, 0.43)
( -4.30, -7.10) ( -6.47, 2.52) ( -6.51, -2.67) ( -5.86, 7.38)
( 1.27, 7.29) ( 8.90, 6.92) ( -8.82, 1.25) ( 5.41, 5.37)
and B is the right-hand side matrix:
( 8.33, -7.32) ( -6.11, -3.81)
( -6.18, -4.80) ( 0.14, -7.71)
( -5.71, -2.80) ( 1.41, 3.40)
( -1.60, 3.08) ( 8.54, -4.05)
Description.
============
The routine solves for X the system of linear equations A*X = B,
where A is an n-by-n matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding
solutions.
The LU decomposition with partial pivoting and row interchanges is
used to factor A as A = P*L*U, where P is a permutation matrix, L
is unit lower triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations A*X = B.
Example Program Results.
========================
LAPACKE_cgesv (row-major, high-level) Example Program Results
Solution
( -1.09, -0.18) ( 1.28, 1.21)
( 0.97, 0.52) ( -0.22, -0.97)
( -0.20, 0.19) ( 0.53, 1.36)
( -0.59, 0.92) ( 2.22, -1.00)
Details of LU factorization
( -4.30, -7.10) ( -6.47, 2.52) ( -6.51, -2.67) ( -5.86, 7.38)
( 0.49, 0.47) ( 12.26, -3.57) ( -7.87, -0.49) ( -0.98, 6.71)
( 0.25, -0.15) ( -0.60, -0.37) (-11.70, -4.64) ( -1.35, 1.38)
( -0.83, -0.32) ( 0.05, 0.58) ( 0.93, -0.50) ( 2.66, 7.86)
Pivot indices
3 3 3 4
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda );
extern void print_int_vector( char* desc, MKL_INT n, MKL_INT* a );
/* Parameters */
#define N 4
#define NRHS 2
#define LDA N
#define LDB NRHS
/* Main program */
int main() {
/* Locals */
MKL_INT n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;
/* Local arrays */
MKL_INT ipiv[N];
MKL_Complex8 a[LDA*N] = {
{ 1.23f, -5.50f}, { 7.91f, -5.38f}, {-9.80f, -4.86f}, {-7.32f, 7.57f},
{-2.14f, -1.12f}, {-9.92f, -0.79f}, {-9.18f, -1.12f}, { 1.37f, 0.43f},
{-4.30f, -7.10f}, {-6.47f, 2.52f}, {-6.51f, -2.67f}, {-5.86f, 7.38f},
{ 1.27f, 7.29f}, { 8.90f, 6.92f}, {-8.82f, 1.25f}, { 5.41f, 5.37f}
};
MKL_Complex8 b[LDB*N] = {
{ 8.33f, -7.32f}, {-6.11f, -3.81f},
{-6.18f, -4.80f}, { 0.14f, -7.71f},
{-5.71f, -2.80f}, { 1.41f, 3.40f},
{-1.60f, 3.08f}, { 8.54f, -4.05f}
};
/* Executable statements */
printf( "LAPACKE_cgesv (row-major, high-level) Example Program Results\n" );
/* Solve the equations A*X = B */
info = LAPACKE_cgesv( LAPACK_ROW_MAJOR, n, nrhs, a, lda, ipiv, b, ldb );
/* Check for the exact singularity */
if( info > 0 ) {
printf( "The diagonal element of the triangular factor of A,\n" );
printf( "U(%i,%i) is zero, so that A is singular;\n", info, info );
printf( "the solution could not be computed.\n" );
exit( 1 );
}
/* Print solution */
print_matrix( "Solution", n, nrhs, b, ldb );
/* Print details of LU factorization */
print_matrix( "Details of LU factorization", n, n, a, lda );
/* Print pivot indices */
print_int_vector( "Pivot indices", n, ipiv );
exit( 0 );
} /* End of LAPACKE_cgesv Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i*lda+j].real, a[i*lda+j].imag );
printf( "\n" );
}
}
/* Auxiliary routine: printing a vector of integers */
void print_int_vector( char* desc, MKL_INT n, MKL_INT* a ) {
MKL_INT j;
printf( "\n %s\n", desc );
for( j = 0; j < n; j++ ) printf( " %6i", a[j] );
printf( "\n" );
}
Parent topic: CGESV Example