Developer Reference

Intel® oneAPI Math Kernel Library LAPACK Examples

ID 766877
Date 10/31/2024
Public
Document Table of Contents

LAPACKE_ssyev Example Program in C for Row Major Data Layout

/*******************************************************************************
*  Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
*  The information and material ("Material") provided below is owned by Intel
*  Corporation or its suppliers or licensors, and title to such Material remains
*  with Intel Corporation or its suppliers or licensors. The Material contains
*  proprietary information of Intel or its suppliers and licensors. The Material
*  is protected by worldwide copyright laws and treaty provisions. No part of
*  the Material may be copied, reproduced, published, uploaded, posted,
*  transmitted, or distributed in any way without Intel's prior express written
*  permission. No license under any patent, copyright or other intellectual
*  property rights in the Material is granted to or conferred upon you, either
*  expressly, by implication, inducement, estoppel or otherwise. Any license
*  under such intellectual property rights must be express and approved by Intel
*  in writing.
*
********************************************************************************
*/
/*
   LAPACKE_ssyev Example.
   ======================

   Program computes all eigenvalues and eigenvectors of a real symmetric
   matrix A:

     1.96  -6.49  -0.47  -7.20  -0.65
    -6.49   3.80  -6.39   1.50  -6.34
    -0.47  -6.39   4.17  -1.51   2.67
    -7.20   1.50  -1.51   5.70   1.80
    -0.65  -6.34   2.67   1.80  -7.10

   Description.
   ============

   The routine computes all eigenvalues and, optionally, eigenvectors of an
   n-by-n real symmetric matrix A. The eigenvector v(j) of A satisfies

   A*v(j) = lambda(j)*v(j)

   where lambda(j) is its eigenvalue. The computed eigenvectors are
   orthonormal.

   Example Program Results.
   ========================

 LAPACKE_ssyev (row-major, high-level) Example Program Results

 Eigenvalues
 -11.07  -6.23   0.86   8.87  16.09

 Eigenvectors (stored columnwise)
  -0.30  -0.61   0.40  -0.37   0.49
  -0.51  -0.29  -0.41  -0.36  -0.61
  -0.08  -0.38  -0.66   0.50   0.40
   0.00  -0.45   0.46   0.62  -0.46
  -0.80   0.45   0.17   0.31   0.16
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"

/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda );

/* Parameters */
#define N 5
#define LDA N

/* Main program */
int main() {
        /* Locals */
        MKL_INT n = N, lda = LDA, info;
        /* Local arrays */
        float w[N];
        float a[LDA*N] = {
            1.96f, -6.49f, -0.47f, -7.20f, -0.65f,
            0.00f,  3.80f, -6.39f,  1.50f, -6.34f,
            0.00f,  0.00f, 4.17f, -1.51f, 2.67f,
            0.00f,  0.00f, 0.00f,  5.70f, 1.80f,
            0.00f,  0.00f, 0.00f,  0.00f, -7.10f
        };
        /* Executable statements */
        printf( "LAPACKE_ssyev (row-major, high-level) Example Program Results\n" );
        /* Solve eigenproblem */
        info = LAPACKE_ssyev( LAPACK_ROW_MAJOR, 'V', 'U', n, a, lda, w );
        /* Check for convergence */
        if( info > 0 ) {
                printf( "The algorithm failed to compute eigenvalues.\n" );
                exit( 1 );
        }
        /* Print eigenvalues */
        print_matrix( "Eigenvalues", 1, n, w, 1 );
        /* Print eigenvectors */
        print_matrix( "Eigenvectors (stored columnwise)", n, n, a, lda );
        exit( 0 );
} /* End of LAPACKE_ssyev Example */

/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda ) {
        MKL_INT i, j;
        printf( "\n %s\n", desc );
        for( i = 0; i < m; i++ ) {
                for( j = 0; j < n; j++ ) printf( " %6.2f", a[i*lda+j] );
                printf( "\n" );
        }
}