GTS HDMI Intel® FPGA IP User Guide

ID 823533
Date 11/25/2024
Public
Document Table of Contents

6.5. Source Deep Color Implementation

You can drive vid_clk regardless of the color depth ratio.

vid_clk frequency = 300 MHz

Figure 27. Deep Color Implementation

The vid_ready signal toggles to indicate if the HDMI TX core is ready to take in new video data. In this case, you can use a DCFIFO IP to store the video data when the HDMI TX core is not ready (vid_ready is low). You need to configure the DCFIFO IP to show-ahead mode, with the vid_ready signal connected to the rden signal of the DCFIFO IP.

When vid_ready is low, the DCFIFO IP holds the video data immediately. When vid_ready goes high, the HDMI TX core processes the stored data without losing any valid video data.

The inverted empty signal from the DCFIFO IP sets the vid_valid signal to the HDMI TX core.

Figure 28. 10 Bits per Component (30 Bits per Pixel)When operating in 10 bits per component, the vid_ready signal is high for 4 out of 5 clock cycles. For every 5 clock cycles, the HDMI TX core processes 4 video data with 10 bits per component.
Figure 29. 12 Bits per Component (36 Bits per Pixel)When operating in 12 bits per component, the vid_ready signal is high for 2 out of 3 clock cycles. For every 3 clock cycles, the HDMI TX core processes 2 video data with 12 bits per component.
Figure 30. 16 Bits per Component (48 Bits per Pixel)When operating in 16 bits per component, the vid_ready signal is high for 1 out of 2 clock cycles. For every 2 clock cycles, the HDMI TX core processes 1 video data with 16 bits per component.