Visible to Intel only — GUID: nik1398984395886
Ixiasoft
1. Transceiver Architecture in Cyclone V Devices
2. Transceiver Clocking in Cyclone V Devices
3. Transceiver Reset Control in Cyclone V Devices
4. Transceiver Protocol Configurations in Cyclone V Devices
5. Transceiver Custom Configurations in Cyclone V Devices
6. Transceiver Loopback Support
7. Dynamic Reconfiguration in Cyclone V Devices
1.3.2.1.1. Word Aligner Options and Behaviors
1.3.2.1.2. Word Aligner in Manual Alignment Mode
1.3.2.1.3. Word Aligner in Bit-Slip Mode
1.3.2.1.4. Word Aligner in Automatic Synchronization State Machine Mode
1.3.2.1.5. Word Aligner in Automatic Synchronization State Machine Mode with a 10-Bit PMA-PCS Interface Configuration
1.3.2.1.6. Word Aligner Operations in Deterministic Latency State Machine Mode
1.3.2.1.7. Programmable Run-Length Violation Detection
1.3.2.1.8. Receiver Polarity Inversion
1.3.2.1.9. Bit Reversal
1.3.2.1.10. Receiver Byte Reversal
3.1. PHY IP Embedded Reset Controller
3.2. User-Coded Reset Controller
3.3. Transceiver Reset Using Avalon Memory Map Registers
3.4. Clock Data Recovery in Manual Lock Mode
Resetting the Transceiver During Dynamic Reconfiguration
3.6. Transceiver Blocks Affected by the Reset and Powerdown Signals
3.7. Transceiver Power-Down
3.8. Document Revision History
3.2.1. User-Coded Reset Controller Signals
3.2.2. Resetting the Transmitter with the User-Coded Reset Controller During Device Power-Up
3.2.3. Resetting the Transmitter with the User-Coded Reset Controller During Device Operation
3.2.4. Resetting the Receiver with the User-Coded Reset Controller During Device Power-Up Configuration
3.2.5. Resetting the Receiver with the User-Coded Reset Controller During Device Operation
4.1.2.1. PIPE Interface
4.1.2.2. Transmitter Electrical Idle Generation
4.1.2.3. Power State Management
4.1.2.4. 8B/10B Encoder Usage for Compliance Pattern Transmission Support
4.1.2.5. Receiver Status
4.1.2.6. Receiver Detection
4.1.2.7. Clock Rate Compensation Up to ±300 ppm
4.1.2.8. PCIe Reverse Parallel Loopback
7.1. Dynamic Reconfiguration Features
7.2. Offset Cancellation
7.3. Transmitter Duty Cycle Distortion Calibration
7.4. PMA Analog Controls Reconfiguration
7.5. Dynamic Reconfiguration of Loopback Modes
7.6. Transceiver PLL Reconfiguration
7.7. Transceiver Channel Reconfiguration
7.8. Transceiver Interface Reconfiguration
7.9. Reduced .mif Reconfiguration
7.10. Unsupported Reconfiguration Modes
7.11. Document Revision History
Visible to Intel only — GUID: nik1398984395886
Ixiasoft
3.2. User-Coded Reset Controller
You must implement external reset controller logic (user-coded reset controller) if you disable the embedded reset controller to initialize the transceiver physical coding sublayer (PCS) and physical medium attachment (PMA) blocks.
You can implement a user-coded reset controller with one of the following:
- Using your own Verilog/VHDL code to implement the reset sequence
- Using the Quartus II IP Catalog, which provides a ready-made reset controller IP to place your own Verilog/VHDL code
When using manual mode, you must create a user-coded reset controller to manage the input signals.
Note: You must disable the embedded reset controller before using the user-coded reset controller.
Note: The embedded reset controller can only be disabled for non-protocol transceiver PHY IPs, such as 10GBASE-R PHY, custom PHY, low latency PHY and deterministic latency PHY. Native PHY IP does not have an embedded reset controller, so you must implement your own reset logic.
If you implement your own reset controller, consider the following:
- The user-coded reset controller must be level sensitive (active high)
- The user-coded reset controller does not depend on phy_mgmt_clk_reset
- You must provide a clock and reset to the reset controller logic
- The internal signals of the PHY IP embedded reset controller are configured as ports
- You can hold the transceiver channels in reset by asserting the appropriate reset control signals
Section Content
User-Coded Reset Controller Signals
Resetting the Transmitter with the User-Coded Reset Controller During Device Power-Up
Resetting the Transmitter with the User-Coded Reset Controller During Device Operation
Resetting the Receiver with the User-Coded Reset Controller During Device Power-Up Configuration
Resetting the Receiver with the User-Coded Reset Controller During Device Operation