Visible to Intel only — GUID: nik1409773892039
Ixiasoft
1. Transceiver Architecture in Cyclone V Devices
2. Transceiver Clocking in Cyclone V Devices
3. Transceiver Reset Control in Cyclone V Devices
4. Transceiver Protocol Configurations in Cyclone V Devices
5. Transceiver Custom Configurations in Cyclone V Devices
6. Transceiver Loopback Support
7. Dynamic Reconfiguration in Cyclone V Devices
1.3.2.1.1. Word Aligner Options and Behaviors
1.3.2.1.2. Word Aligner in Manual Alignment Mode
1.3.2.1.3. Word Aligner in Bit-Slip Mode
1.3.2.1.4. Word Aligner in Automatic Synchronization State Machine Mode
1.3.2.1.5. Word Aligner in Automatic Synchronization State Machine Mode with a 10-Bit PMA-PCS Interface Configuration
1.3.2.1.6. Word Aligner Operations in Deterministic Latency State Machine Mode
1.3.2.1.7. Programmable Run-Length Violation Detection
1.3.2.1.8. Receiver Polarity Inversion
1.3.2.1.9. Bit Reversal
1.3.2.1.10. Receiver Byte Reversal
3.1. PHY IP Embedded Reset Controller
3.2. User-Coded Reset Controller
3.3. Transceiver Reset Using Avalon Memory Map Registers
3.4. Clock Data Recovery in Manual Lock Mode
Resetting the Transceiver During Dynamic Reconfiguration
3.6. Transceiver Blocks Affected by the Reset and Powerdown Signals
3.7. Transceiver Power-Down
3.8. Document Revision History
3.2.1. User-Coded Reset Controller Signals
3.2.2. Resetting the Transmitter with the User-Coded Reset Controller During Device Power-Up
3.2.3. Resetting the Transmitter with the User-Coded Reset Controller During Device Operation
3.2.4. Resetting the Receiver with the User-Coded Reset Controller During Device Power-Up Configuration
3.2.5. Resetting the Receiver with the User-Coded Reset Controller During Device Operation
4.1.2.1. PIPE Interface
4.1.2.2. Transmitter Electrical Idle Generation
4.1.2.3. Power State Management
4.1.2.4. 8B/10B Encoder Usage for Compliance Pattern Transmission Support
4.1.2.5. Receiver Status
4.1.2.6. Receiver Detection
4.1.2.7. Clock Rate Compensation Up to ±300 ppm
4.1.2.8. PCIe Reverse Parallel Loopback
7.1. Dynamic Reconfiguration Features
7.2. Offset Cancellation
7.3. Transmitter Duty Cycle Distortion Calibration
7.4. PMA Analog Controls Reconfiguration
7.5. Dynamic Reconfiguration of Loopback Modes
7.6. Transceiver PLL Reconfiguration
7.7. Transceiver Channel Reconfiguration
7.8. Transceiver Interface Reconfiguration
7.9. Reduced .mif Reconfiguration
7.10. Unsupported Reconfiguration Modes
7.11. Document Revision History
Visible to Intel only — GUID: nik1409773892039
Ixiasoft
3.2.1. User-Coded Reset Controller Signals
Use the signals in the following figure and table with a user-coded reset controller.
Figure 59. Interaction Between the Transceiver PHY Instance, Transceiver Reconfiguration Controller, and the User-Coded Reset Controller
Signal Name | Signal Type | Description |
---|---|---|
mgmt_clk_clk | Clock | Clock for the Transceiver Reconfiguration Controller. This clock must be stable before releasing mgmt_rst_reset. |
mgmt_rst_reset | Reset | Reset for the Transceiver Reconfiguration Controller |
pll_powerdown | Control | Resets the TX PLL when asserted high |
tx_analogreset | Control | Resets the TX PMA when asserted high |
tx_digitalreset | Control | Resets the TX PCS when asserted high |
rx_analogreset | Control | Resets the RX PMA when asserted high |
rx_digitalreset | Control | Resets the RX PCS when asserted high |
reconfig_busy | Status | A high on this signal indicates that reconfiguration is active |
tx_cal_busy | Status | A high on this signal indicates that TX calibration is active |
rx_cal_busy | Status | A high on this signal indicates that RX calibration is active |
pll_locked | Status | A high on this signal indicates that the TX PLL is locked |
rx_is_lockedtoref | Status | A high on this signal indicates that the RX CDR is in the lock to reference (LTR) mode |
rx_is_lockedtodata | Status | A high on this signal indicates that the RX CDR is in the lock to data (LTD) mode |