Visible to Intel only — GUID: nik1409773893584
Ixiasoft
1. Transceiver Architecture in Cyclone V Devices
2. Transceiver Clocking in Cyclone V Devices
3. Transceiver Reset Control in Cyclone V Devices
4. Transceiver Protocol Configurations in Cyclone V Devices
5. Transceiver Custom Configurations in Cyclone V Devices
6. Transceiver Loopback Support
7. Dynamic Reconfiguration in Cyclone V Devices
1.3.2.1.1. Word Aligner Options and Behaviors
1.3.2.1.2. Word Aligner in Manual Alignment Mode
1.3.2.1.3. Word Aligner in Bit-Slip Mode
1.3.2.1.4. Word Aligner in Automatic Synchronization State Machine Mode
1.3.2.1.5. Word Aligner in Automatic Synchronization State Machine Mode with a 10-Bit PMA-PCS Interface Configuration
1.3.2.1.6. Word Aligner Operations in Deterministic Latency State Machine Mode
1.3.2.1.7. Programmable Run-Length Violation Detection
1.3.2.1.8. Receiver Polarity Inversion
1.3.2.1.9. Bit Reversal
1.3.2.1.10. Receiver Byte Reversal
3.1. PHY IP Embedded Reset Controller
3.2. User-Coded Reset Controller
3.3. Transceiver Reset Using Avalon Memory Map Registers
3.4. Clock Data Recovery in Manual Lock Mode
Resetting the Transceiver During Dynamic Reconfiguration
3.6. Transceiver Blocks Affected by the Reset and Powerdown Signals
3.7. Transceiver Power-Down
3.8. Document Revision History
3.2.1. User-Coded Reset Controller Signals
3.2.2. Resetting the Transmitter with the User-Coded Reset Controller During Device Power-Up
3.2.3. Resetting the Transmitter with the User-Coded Reset Controller During Device Operation
3.2.4. Resetting the Receiver with the User-Coded Reset Controller During Device Power-Up Configuration
3.2.5. Resetting the Receiver with the User-Coded Reset Controller During Device Operation
4.1.2.1. PIPE Interface
4.1.2.2. Transmitter Electrical Idle Generation
4.1.2.3. Power State Management
4.1.2.4. 8B/10B Encoder Usage for Compliance Pattern Transmission Support
4.1.2.5. Receiver Status
4.1.2.6. Receiver Detection
4.1.2.7. Clock Rate Compensation Up to ±300 ppm
4.1.2.8. PCIe Reverse Parallel Loopback
7.1. Dynamic Reconfiguration Features
7.2. Offset Cancellation
7.3. Transmitter Duty Cycle Distortion Calibration
7.4. PMA Analog Controls Reconfiguration
7.5. Dynamic Reconfiguration of Loopback Modes
7.6. Transceiver PLL Reconfiguration
7.7. Transceiver Channel Reconfiguration
7.8. Transceiver Interface Reconfiguration
7.9. Reduced .mif Reconfiguration
7.10. Unsupported Reconfiguration Modes
7.11. Document Revision History
Visible to Intel only — GUID: nik1409773893584
Ixiasoft
3.2.3. Resetting the Transmitter with the User-Coded Reset Controller During Device Operation
Follow this reset sequence if you want to reset the PLL, or analog or digital blocks of the transmitter at any point during device operation. This might be necessary for re-establishing a link or after certain dynamic reconfigurations.
The numbers in the following figure correspond to the following numbered list, which guides you through the transmitter reset sequence during device operation.
- To reset the transmitter:
- Assert pll_powerdown, tx_analogreset and tx_digitalreset. tx_digitalreset must be asserted every time pll_powerdown and tx_analogreset are asserted to reset the PCS blocks.
- Hold pll_powerdown asserted for a minimum duration of tpll_powerdown.
- Deassert tx_analogreset at the same time or after pll_powerdown is deasserted.
- After the transmitter PLL locks, the pll_locked status is asserted after tpll_lock. While the TX PLL locks, the pll_locked status signal may toggle. It is asserted after tpll_lock.
- Deassert tx_digitalreset after a minimum duration of ttx_digitalreset, and after all the gating conditions are removed:
- pll_powerdown is deasserted
- pll_locked is deasserted
Figure 61. Reset Sequence Timing Diagram for Transmitter using the User-Coded Reset Controller during Device Operation