Visible to Intel only — GUID: ppn1597340259714
Ixiasoft
1.1.1. Timing Path and Clock Analysis
1.1.2. Clock Setup Analysis
1.1.3. Clock Hold Analysis
1.1.4. Recovery and Removal Analysis
1.1.5. Multicycle Path Analysis
1.1.6. Metastability Analysis
1.1.7. Timing Pessimism
1.1.8. Clock-As-Data Analysis
1.1.9. Multicorner Timing Analysis
1.1.10. Time Borrowing
2.1. Timing Analysis Flow
2.2. Step 1: Specify Timing Analyzer Settings
2.3. Step 2: Specify Timing Constraints
2.4. Step 3: Run the Timing Analyzer
2.5. Step 4: Analyze Timing Reports
2.6. Applying Timing Constraints
2.7. Timing Analyzer Tcl Commands
2.8. Timing Analysis of Imported Compilation Results
2.9. Using the Intel® Quartus® Prime Timing Analyzer Document Revision History
2.10. Intel® Quartus® Prime Pro Edition User Guide: Timing Analyzer Archive
2.5.1.1. Report Fmax Summary
2.5.1.2. Report Timing
2.5.1.3. Report Data Delay
2.5.1.4. Report Clocks and Clock Networks
2.5.1.5. Report Clock Transfers
2.5.1.6. Report Logic Depth
2.5.1.7. Report Neighbor Paths
2.5.1.8. Report Register Spread
2.5.1.9. Report Route Net of Interest
2.5.1.10. Report Retiming Restrictions
2.5.1.11. Report Reset Statistics
2.5.1.12. Report Pipelining Information
2.5.1.13. Report Asynchronous CDC
2.5.1.14. Report CDC Viewer
2.5.1.15. Report Time Borrowing Data
2.5.1.16. Report Exceptions and Exceptions Reachability
2.6.1. Recommended Initial SDC Constraints
2.6.2. SDC File Precedence
2.6.3. Modifying Iterative Constraints
2.6.4. Using Entity-bound SDC Files
2.6.5. Creating Clocks and Clock Constraints
2.6.6. Creating I/O Constraints
2.6.7. Creating Delay and Skew Constraints
2.6.8. Creating Timing Exceptions
2.6.9. Using Fitter Overconstraints
2.6.10. Example Circuit and SDC File
2.6.8.5.1. Default Multicycle Analysis
2.6.8.5.2. End Multicycle Setup = 2 and End Multicycle Hold = 0
2.6.8.5.3. End Multicycle Setup = 2 and End Multicycle Hold = 1
2.6.8.5.4. Same Frequency Clocks with Destination Clock Offset
2.6.8.5.5. Destination Clock Frequency is a Multiple of the Source Clock Frequency
2.6.8.5.6. Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
2.6.8.5.7. Source Clock Frequency is a Multiple of the Destination Clock Frequency
2.6.8.5.8. Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset
Visible to Intel only — GUID: ppn1597340259714
Ixiasoft
2.5.2.1. Cross-Probing from Design Assistant to Timing Analyzer
Some Design Assistant rule violations allow cross-probing into Timing Analyzer. For example, for a path that Design Assistant flags with a setup analysis violation due to delay added for hold, you can cross-probe into the Timing Analyzer to view more information on the affected path and edge.
Follow these steps to cross-probe from such Design Assistant rule violations to the Timing Analyzer:
- Compile the design through at least the Compiler's Plan stage.
- Locate a rule violation in the Design Assistant folder of the Compilation Report.
- Right-click the rule violation to display any Report Timing commands available for the violation.
Figure 77. Cross Probing from Design Assistant Rule TMC-20210 Violations to Timing Analyzer
- Click the Report Timing command. The Timing Analyzer opens and reports the timing data for the violation path. Report Timing (Extra Info) includes Estimated Delay Added for Hold and Route Stage Congestion Impact extra data.