Visible to Intel only — GUID: sdy1566315401818
Ixiasoft
1.1. Compilation Overview
1.2. Using the Node Finder
1.3. Design Analysis & Elaboration
1.4. Design Synthesis
1.5. Design Place and Route
1.6. Incremental Optimization Flow
1.7. Fast Forward Compilation Flow
1.8. Full Compilation Flow
1.9. HSSI Dual Simplex IP Generation Flow
1.10. Exporting Compilation Results
1.11. Integrating Other EDA Tools
1.12. Compiler Optimization Techniques
1.13. Compilation Monitoring Mode
1.14. Synthesis Language Support
1.15. Synthesis Settings Reference
1.16. Fitter Settings Reference
1.17. Design Compilation Revision History
1.4.3.1. Registering the SDC-on-RTL SDC File
1.4.3.2. Applying the SDC-on-RTL Constraints
1.4.3.3. Inspecting SDC-on-RTL Constraints
1.4.3.4. Creating Constraints in SDC-on-RTL SDC Files
1.4.3.5. Using Entity-Based SDC-on-RTL Constraints
1.4.3.6. Types of SDC Files Used in the Quartus® Prime Software
1.4.3.7. Example: Using SDC-on-RTL Features
1.10.1. Exporting a Version-Compatible Compilation Database
1.10.2. Importing a Version-Compatible Compilation Database
1.10.3. Creating a Design Partition
1.10.4. Exporting a Design Partition
1.10.5. Reusing a Design Partition
1.10.6. Viewing Quartus Database File Information
1.10.7. Clearing Compilation Results
1.12.1. Compiler Optimization Modes
1.12.2. Precompiled Component (PCC) Generation Stage
1.12.3. Compilation on a Compute Farm
1.12.4. Allow Register Retiming
1.12.5. Automatic Gated Clock Conversion
1.12.6. Enable Intermediate Fitter Snapshots
1.12.7. Fast Preserve Option
1.12.8. Fractal Synthesis Optimization
2.1. Factors Affecting Compilation Results
2.2. Strategies to Reduce the Overall Compilation Time
2.3. Reducing Synthesis Time and Synthesis Netlist Optimization Time
2.4. Reducing Placement Time
2.5. Reducing Routing Time
2.6. Reducing Static Timing Analysis Time
2.7. Setting Process Priority
2.8. Reducing Compilation Time Revision History
Visible to Intel only — GUID: sdy1566315401818
Ixiasoft
1.5.2.3.2. Global Router Wire Utilization Map Report
The Global Router Wire Utilization Map report displays global signal routing in an interactive heat-map. This report shows routing utilization rate of long and short routing wires. You can also use this report to obtain a detailed view of all the nets in the design. The report's heatmap grid shows the available device LABs. The color of the grid ranges from blue to red as the utilization rate changes from 0% to 100%. The color becomes pink if the utilization rate is greater than 100%.
Figure 75. Global Router Wire Utilization Heat Map (Multiple Layers)
Filter the Global Router Wire table to show short or long Wirelengths in all Directions. The content of the table changes based on the selections you make in the heatmap. You can search for Signal Names, and then single- or multi-select the signal names to display properties in the lower pane. Select one or more nodes in the table to Locate in various editors.
Figure 76. Global Router Wire Utilization Details