Visible to Intel only — GUID: qzj1517596298598
Ixiasoft
1. Introduction to Standard Edition Best Practices Guide
2. Reviewing Your Kernel's report.html File
3. OpenCL Kernel Design Best Practices
4. Profiling Your Kernel to Identify Performance Bottlenecks
5. Strategies for Improving Single Work-Item Kernel Performance
6. Strategies for Improving NDRange Kernel Data Processing Efficiency
7. Strategies for Improving Memory Access Efficiency
8. Strategies for Optimizing FPGA Area Usage
A. Additional Information
2.1. High Level Design Report Layout
2.2. Reviewing the Report Summary
2.3. Reviewing Loop Information
2.4. Reviewing Area Information
2.5. Verifying Information on Memory Replication and Stalls
2.6. Optimizing an OpenCL Design Example Based on Information in the HTML Report
2.7. HTML Report: Area Report Messages
2.8. HTML Report: Kernel Design Concepts
3.1. Transferring Data Via Channels or OpenCL Pipes
3.2. Unrolling Loops
3.3. Optimizing Floating-Point Operations
3.4. Allocating Aligned Memory
3.5. Aligning a Struct with or without Padding
3.6. Maintaining Similar Structures for Vector Type Elements
3.7. Avoiding Pointer Aliasing
3.8. Avoid Expensive Functions
3.9. Avoiding Work-Item ID-Dependent Backward Branching
4.3.4.1. High Stall Percentage
4.3.4.2. Low Occupancy Percentage
4.3.4.3. Low Bandwidth Efficiency
4.3.4.4. High Stall and High Occupancy Percentages
4.3.4.5. No Stalls, Low Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.6. No Stalls, High Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.7. Stalling Channels
4.3.4.8. High Stall and Low Occupancy Percentages
7.1. General Guidelines on Optimizing Memory Accesses
7.2. Optimize Global Memory Accesses
7.3. Performing Kernel Computations Using Constant, Local or Private Memory
7.4. Improving Kernel Performance by Banking the Local Memory
7.5. Optimizing Accesses to Local Memory by Controlling the Memory Replication Factor
7.6. Minimizing the Memory Dependencies for Loop Pipelining
Visible to Intel only — GUID: qzj1517596298598
Ixiasoft
7.2.2. Manual Partitioning of Global Memory
You can partition the memory manually so that each buffer occupies a different memory bank.
The default burst-interleaved configuration of the global memory prevents load imbalance by ensuring that memory accesses do not favor one external memory bank over another. However, you have the option to control the memory bandwidth across a group of buffers by partitioning your data manually.
The cannot burst-interleave across different memory types. To manually partition a specific type of global memory , compile your OpenCL™ kernels with the -no-interleaving=<global_memory_type> flag to configure each bank of a certain memory type as non-interleaved banks.
If your kernel accesses two buffers of equal size in memory, you can distribute your data to both memory banks simultaneously regardless of dynamic scheduling between the loads. This optimization step might increase your apparent memory bandwidth.
If your kernel accesses heterogeneous global memory types, include the -no-interleaving=<global_memory_type> option in the aoc command for each memory type that you want to partition manually.
For more information on the usage of the -no-interleaving=<global_memory_type> option, refer to the Disabling Burst-Interleaving of Global Memory (-no-interleaving=<global_memory_type>) section of the Standard Edition Programming Guide.