Visible to Intel only — GUID: uve1517938283289
Ixiasoft
1. Introduction to Standard Edition Best Practices Guide
2. Reviewing Your Kernel's report.html File
3. OpenCL Kernel Design Best Practices
4. Profiling Your Kernel to Identify Performance Bottlenecks
5. Strategies for Improving Single Work-Item Kernel Performance
6. Strategies for Improving NDRange Kernel Data Processing Efficiency
7. Strategies for Improving Memory Access Efficiency
8. Strategies for Optimizing FPGA Area Usage
A. Additional Information
2.1. High Level Design Report Layout
2.2. Reviewing the Report Summary
2.3. Reviewing Loop Information
2.4. Reviewing Area Information
2.5. Verifying Information on Memory Replication and Stalls
2.6. Optimizing an OpenCL Design Example Based on Information in the HTML Report
2.7. HTML Report: Area Report Messages
2.8. HTML Report: Kernel Design Concepts
3.1. Transferring Data Via Channels or OpenCL Pipes
3.2. Unrolling Loops
3.3. Optimizing Floating-Point Operations
3.4. Allocating Aligned Memory
3.5. Aligning a Struct with or without Padding
3.6. Maintaining Similar Structures for Vector Type Elements
3.7. Avoiding Pointer Aliasing
3.8. Avoid Expensive Functions
3.9. Avoiding Work-Item ID-Dependent Backward Branching
4.3.4.1. High Stall Percentage
4.3.4.2. Low Occupancy Percentage
4.3.4.3. Low Bandwidth Efficiency
4.3.4.4. High Stall and High Occupancy Percentages
4.3.4.5. No Stalls, Low Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.6. No Stalls, High Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.7. Stalling Channels
4.3.4.8. High Stall and Low Occupancy Percentages
7.1. General Guidelines on Optimizing Memory Accesses
7.2. Optimize Global Memory Accesses
7.3. Performing Kernel Computations Using Constant, Local or Private Memory
7.4. Improving Kernel Performance by Banking the Local Memory
7.5. Optimizing Accesses to Local Memory by Controlling the Memory Replication Factor
7.6. Minimizing the Memory Dependencies for Loop Pipelining
Visible to Intel only — GUID: uve1517938283289
Ixiasoft
2.3.2. Changing the Memory Access Pattern Example
The following is an example code of a simple OpenCL kernel:
kernel void big_lmem_4r_4w_nosplit (global int* restrict in,
global int* restrict out) {
local int lmem[4][1024];
int gi = get_global_id(0);
int gs = get_global_size(0);
int li = get_local_id(0);
int ls = get_local_size(0);
int res = in[gi];
#pragma unroll
for (int i = 0; i < 4; i++) {
lmem[i][(li*i) % ls] = res;
res >>= 1; }
// Global memory barrier
barrier(CLK_GLOBAL_MEM_FENCE);
res = 0;
#pragma unroll
for (int i = 0; i < 4; i++) {
res ^= lmem[i][((ls-li)*i) % ls]; }
out[gi] = res;
}
The system viewer report of this example highlights the stallable loads and stores.
Figure 16. System View of the Example
Figure 17. Area Report of the Example
Figure 18. Kernel Memory Viewer of the Example
Observe that only two memory banks are created, with high arbitration on the first bank between load and store operations. Now, switch the banking indices to the second dimension, as shown in the following example code, :
kernel void big_lmem_4r_4w_nosplit (global int* restrict in,
global int* restrict out) {
local int lmem[1024][4];
int gi = get_global_id(0);
int gs = get_global_size(0);
int li = get_local_id(0);
int ls = get_local_size(0);
int res = in[gi];
#pragma unroll
for (int i = 0; i < 4; i++) {
lmem[(li*i) % ls][i] = res;
res >>= 1;
}
// Global memory barrier
barrier(CLK_GLOBAL_MEM_FENCE);
res = 0;
#pragma unroll
for (int i = 0; i < 4; i++) {
res ^= lmem[((ls-li)*i) % ls][i];
}
out[gi] = res;
}
In the kernel memory viewer, you can observe that now four memory banks are created, with separate load store units. All load store instructions are stall-free.
Figure 19. Kernel Memory Viewer of the Example After Changing the Banking Indices
Figure 20. Area Report of the Example After Changing the Banking Indices