Visible to Intel only — GUID: ojl1517595741752
Ixiasoft
1. Introduction to Standard Edition Best Practices Guide
2. Reviewing Your Kernel's report.html File
3. OpenCL Kernel Design Best Practices
4. Profiling Your Kernel to Identify Performance Bottlenecks
5. Strategies for Improving Single Work-Item Kernel Performance
6. Strategies for Improving NDRange Kernel Data Processing Efficiency
7. Strategies for Improving Memory Access Efficiency
8. Strategies for Optimizing FPGA Area Usage
A. Additional Information
2.1. High Level Design Report Layout
2.2. Reviewing the Report Summary
2.3. Reviewing Loop Information
2.4. Reviewing Area Information
2.5. Verifying Information on Memory Replication and Stalls
2.6. Optimizing an OpenCL Design Example Based on Information in the HTML Report
2.7. HTML Report: Area Report Messages
2.8. HTML Report: Kernel Design Concepts
3.1. Transferring Data Via Channels or OpenCL Pipes
3.2. Unrolling Loops
3.3. Optimizing Floating-Point Operations
3.4. Allocating Aligned Memory
3.5. Aligning a Struct with or without Padding
3.6. Maintaining Similar Structures for Vector Type Elements
3.7. Avoiding Pointer Aliasing
3.8. Avoid Expensive Functions
3.9. Avoiding Work-Item ID-Dependent Backward Branching
4.3.4.1. High Stall Percentage
4.3.4.2. Low Occupancy Percentage
4.3.4.3. Low Bandwidth Efficiency
4.3.4.4. High Stall and High Occupancy Percentages
4.3.4.5. No Stalls, Low Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.6. No Stalls, High Occupancy Percentage, and Low Bandwidth Efficiency
4.3.4.7. Stalling Channels
4.3.4.8. High Stall and Low Occupancy Percentages
7.1. General Guidelines on Optimizing Memory Accesses
7.2. Optimize Global Memory Accesses
7.3. Performing Kernel Computations Using Constant, Local or Private Memory
7.4. Improving Kernel Performance by Banking the Local Memory
7.5. Optimizing Accesses to Local Memory by Controlling the Memory Replication Factor
7.6. Minimizing the Memory Dependencies for Loop Pipelining
Visible to Intel only — GUID: ojl1517595741752
Ixiasoft
8.4. Arithmetic Operation Considerations
Select the appropriate arithmetic operation for your OpenCL™ application to avoid excessive FPGA area usage.
- Introduce floating-point arithmetic operations only when necessary.
- The defaults floating-point constants to double data type. Add an f designation to the constant to make it a single precision floating-point operation.
For example, the arithmetic operation sin(1.0) represents a double precision floating-point sine function. The arithmetic operation sin(1.0f) represents a single precision floating-point sine function.
- If you do not require full precision result for a complex function, compute simpler arithmetic operations to approximate the result. Consider the following example scenarios:
- Instead of computing the function pow(x,n) where n is a small value, approximate the result by performing repeated squaring operations because they require much less hardware resources and area.
- Ensure you are aware of the original and approximated area usages because in some cases, computing a result via approximation might result in excess area usage. For example, the sqrt function is not resource-intensive. Other than a rough approximation, replacing the sqrt function with arithmetic operations that the host has to compute at runtime might result in larger area usage.
- If you work with a small set of input values, consider using a LUT instead.
- If your kernel performs a complex arithmetic operation with a constant that the offline compiler computes at compilation time (for example, log(PI/2.0)), perform the arithmetic operation on the host instead and pass the result as an argument to the kernel at runtime.