Visible to Intel only — GUID: sfo1410070174227
Ixiasoft
1. Arria® V Hard Processor System Technical Reference Manual Revision History
2. Introduction to the Hard Processor System
3. Clock Manager
4. Reset Manager
5. FPGA Manager
6. System Manager
7. Scan Manager
8. System Interconnect
9. HPS-FPGA Bridges
10. Cortex®-A9 Microprocessor Unit Subsystem
11. CoreSight* Debug and Trace
12. SDRAM Controller Subsystem
13. On-Chip Memory
14. NAND Flash Controller
15. SD/MMC Controller
16. Quad SPI Flash Controller
17. DMA Controller
18. Ethernet Media Access Controller
19. USB 2.0 OTG Controller
20. SPI Controller
21. I2C Controller
22. UART Controller
23. General-Purpose I/O Interface
24. Timer
25. Watchdog Timer
26. Introduction to the HPS Component
27. Instantiating the HPS Component
28. HPS Component Interfaces
29. Simulating the HPS Component
A. Booting and Configuration
8.3.1. Master to Slave Connectivity Matrix
8.3.2. System Interconnect Address Spaces
8.3.3. Master Caching and Buffering Overrides
8.3.4. Security
8.3.5. Configuring the Quality of Service Logic
8.3.6. Cyclic Dependency Avoidance Schemes
8.3.7. System Interconnect Master Properties
8.3.8. Interconnect Slave Properties
8.3.9. Upsizing Data Width Function
8.3.10. Downsizing Data Width Function
8.3.11. Lock Support
8.3.12. FIFO Buffers and Clock Crossing
8.3.13. System Interconnect Resets
10.3.1. Functional Description
10.3.2. Implementation Details
10.3.3. Cortex®-A9 Processor
10.3.4. Interactive Debugging Features
10.3.5. L1 Caches
10.3.6. Preload Engine
10.3.7. Floating Point Unit
10.3.8. NEON* Multimedia Processing Engine
10.3.9. Memory Management Unit
10.3.10. Performance Monitoring Unit
10.3.11. Arm* Cortex* -A9 MPCore* Timers
10.3.12. Generic Interrupt Controller
10.3.13. Global Timer
10.3.14. Snoop Control Unit
10.3.15. Accelerator Coherency Port
11.1. Features of CoreSight* Debug and Trace
11.2. Arm* CoreSight* Documentation
11.3. CoreSight Debug and Trace Block Diagram and System Integration
11.4. Functional Description of CoreSight Debug and Trace
11.5. CoreSight* Debug and Trace Programming Model
11.6. CoreSight Debug and Trace Address Map and Register Definitions
11.4.1. Debug Access Port
11.4.2. System Trace Macrocell
11.4.3. Trace Funnel
11.4.4. CoreSight Trace Memory Controller
11.4.5. AMBA* Trace Bus Replicator
11.4.6. Trace Port Interface Unit
11.4.7. Embedded Cross Trigger System
11.4.8. Program Trace Macrocell
11.4.9. HPS Debug APB* Interface
11.4.10. FPGA Interface
11.4.11. Debug Clocks
11.4.12. Debug Resets
12.1. Features of the SDRAM Controller Subsystem
12.2. SDRAM Controller Subsystem Block Diagram
12.3. SDRAM Controller Memory Options
12.4. SDRAM Controller Subsystem Interfaces
12.5. Memory Controller Architecture
12.6. Functional Description of the SDRAM Controller Subsystem
12.7. SDRAM Power Management
12.8. DDR PHY
12.9. Clocks
12.10. Resets
12.11. Port Mappings
12.12. Initialization
12.13. SDRAM Controller Subsystem Programming Model
12.14. Debugging HPS SDRAM in the Preloader
12.15. SDRAM Controller Address Map and Register Definitions
14.1. NAND Flash Controller Features
14.2. NAND Flash Controller Block Diagram and System Integration
14.3. NAND Flash Controller Signal Descriptions
14.4. Functional Description of the NAND Flash Controller
14.5. NAND Flash Controller Programming Model
14.6. NAND Flash Controller Address Map and Register Definitions
15.1. Features of the SD/MMC Controller
15.2. SD/MMC Controller Block Diagram and System Integration
15.3. SD/MMC Controller Signal Description
15.4. Functional Description of the SD/MMC Controller
15.5. SD/MMC Controller Programming Model
15.6. SD/MMC Controller Address Map and Register Definitions
16.1. Features of the Quad SPI Flash Controller
16.2. Quad SPI Flash Controller Block Diagram and System Integration
16.3. Interface Signals
16.4. Functional Description of the Quad SPI Flash Controller
16.5. Quad SPI Flash Controller Programming Model
16.6. Quad SPI Flash Controller Address Map and Register Definitions
16.4.1. Overview
16.4.2. Data Slave Interface
16.4.3. SPI Legacy Mode
16.4.4. Register Slave Interface
16.4.5. Local Memory Buffer
16.4.6. DMA Peripheral Request Controller
16.4.7. Arbitration between Direct/Indirect Access Controller and STIG
16.4.8. Configuring the Flash Device
16.4.9. XIP Mode
16.4.10. Write Protection
16.4.11. Data Slave Sequential Access Detection
16.4.12. Clocks
16.4.13. Resets
16.4.14. Interrupts
18.6.1. System Level EMAC Configuration Registers
18.6.2. EMAC FPGA Interface Initialization
18.6.3. EMAC HPS Interface Initialization
18.6.4. DMA Initialization
18.6.5. EMAC Initialization and Configuration
18.6.6. Performing Normal Receive and Transmit Operation
18.6.7. Stopping and Starting Transmission
18.6.8. Programming Guidelines for Energy Efficient Ethernet
18.6.9. Programming Guidelines for Flexible Pulse-Per-Second (PPS) Output
19.1. Features of the USB OTG Controller
19.2. USB OTG Controller Block Diagram and System Integration
19.3. USB 2.0 ULPI PHY Signal Description
19.4. Functional Description of the USB OTG Controller
19.5. USB OTG Controller Programming Model
19.6. USB 2.0 OTG Controller Address Map and Register Definitions
29.1. Simulation Flows
29.2. Clock and Reset Interfaces
29.3. FPGA-to-HPS AXI Slave Interface
29.4. HPS-to-FPGA AXI Master Interface
29.5. Lightweight HPS-to-FPGA AXI Master Interface
29.6. FPGA-to-HPS SDRAM Interface
29.7. HPS-to-FPGA MPU Event Interface
29.8. Interrupts Interface
29.9. HPS-to-FPGA Debug APB* Interface
29.10. FPGA-to-HPS System Trace Macrocell Hardware Event Interface
29.11. HPS-to-FPGA Cross-Trigger Interface
29.12. HPS-to-FPGA Trace Port Interface
29.13. FPGA-to-HPS DMA Handshake Interface
29.14. Boot from FPGA Interface
29.15. General Purpose Input Interface
Visible to Intel only — GUID: sfo1410070174227
Ixiasoft
A.7.1. Full Configuration
The HPS uses the FPGA manager to configure the FPGA portion of the device. The following sequence suggests one way for software to perform a full configuration:
- CONF_DONE = 1 and nSTATUS = 1 indicates successful configuration.
- CONF_DONE = 0 or nSTATUS = 0 indicates unsuccessful configuration. Complete steps 12 and 13, then go back and repeat steps 3 to 10 to reload the configuration image.
- If DCLK is unused, write a value of 4 to the DCLK count register (dclkcnt).
- If DCLK is used, write a value of 20,480 (0x5000) to the dclkcnt register.
If the HPS resets in the middle of a normal configuration data transfer before entering user mode, software can assume that the configuration is unsuccessful. After the HPS resets, software must repeat the steps for full configuration.
- Set the cdratio and cfgwdth bits of the ctrl register in the FPGA manager registers (fpgamgrregs) to match the characteristics of the configuration image. These settings are dependent on the MSEL pins input.
- Set the nce bit of the ctrl register to 0 to enable HPS configuration.
- Set the en bit of the ctrl register to 1 to give the FPGA manager control of the configuration input signals.
- Set the nconfigpull bit of the ctrl register to 1 to pull down the nCONFIG pin and put the FPGA portion of the device into the reset phase.
- Poll the mode bit of the stat register and wait until the FPGA enters the reset phase.
- Set the nconfigpull bit of the ctrl register to 0 to release the FPGA from reset.
- Read the mode bit of the stat register and wait until the FPGA enters the configuration phase.
- Clear the interrupt bit of nSTATUS (ns) in the gpio interrupt register ( fpgamgrregs.mon.gpio_porta_eoi).
- Set the axicfgen bit of the ctrl register to 1 to enable sending configuration data to the FPGA.
- Write the configuration image to the configuration data register (data) in the FPGA manager module configuration data registers (fpgamgrdata). You can also choose to use a DMA controller to transfer the configuration image from a peripheral device to the FPGA manager.
- Use the fpgamgrregs.mon.gpio_ext_porta registers to monitor the CONF_DONE (cd) and nSTATUS (ns) bits.
- Set the axicfgen bit of the ctrl register to 0 to disable configuration data on AXI slave.
- Clear any previous DONE status by writing a 1 to the dcntdone bit of the DCLK status register (dclkstat) to clear the completed status flag.
- Send the DCLKs required by the FPGA to enter the initialization phase.
- Poll the dcntdone bit of the DCLK status register (dclkstat) until it changes to 1, which indicates that all the DCLKs have been sent.
- Write a 1 to the dcntdone bit of the DCLK status register to clear the completed status flag.
- Read the mode bit of the stat register to wait for the FPGA to enter user mode.
- Set the en bit of the ctrl register to 0 to allow the external pins to drive the configuration input signals.