Visible to Intel only — GUID: lfn1616520707978
Ixiasoft
1. F-tile Overview
2. F-tile Architecture
3. Implementing the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
4. Implementing the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5. Implementing the F-Tile Global Avalon® Memory-Mapped Interface Intel® FPGA IP
6. F-tile PMA/FEC Direct PHY Design Implementation
7. Supported Tools
8. Debugging F-Tile Transceiver Links
9. F-tile Architecture and PMA and FEC Direct PHY IP User Guide Archives
10. Document Revision History for F-tile Architecture and PMA and FEC Direct PHY IP User Guide
2.1.1. FHT and FGT PMAs
2.1.2. 400G Hard IP and 200G Hard IP
2.1.3. PMA Data Rates
2.1.4. FEC Architecture
2.1.5. PCIe* Hard IP
2.1.6. Bonding Architecture
2.1.7. Deskew Logic
2.1.8. Embedded Multi-die Interconnect Bridge (EMIB)
2.1.9. IEEE 1588 Precision Time Protocol for Ethernet
2.1.10. Clock Networks
2.1.11. Reconfiguration Interfaces
2.2.1. PMA-to-Fracture Mapping
2.2.2. Determining Which PMA to Map to Which Fracture
2.2.3. Hard IP Placement Rules
2.2.4. IEEE 1588 Precision Time Protocol Placement Rules
2.2.5. Topologies
2.2.6. FEC Placement Rules
2.2.7. Clock Rules and Restrictions
2.2.8. Bonding Placement Rules
2.2.9. Preserving Unused PMA Lanes
2.2.2.1. Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
2.2.2.2. Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
2.2.2.3. Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
2.2.2.4. Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
2.2.2.5. Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
2.2.2.6. Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.7. Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.8. Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.9. Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.10. Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP Overview
3.2. Designing with F-Tile PMA/FEC Direct PHY Intel® FPGA IP
3.3. Configuring the IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Independent Port Configurations
3.11. Configuration Registers
3.12. Configurable Intel® Quartus® Prime Software Settings
3.13. Configuring the F-Tile PMA/FEC Direct PHY Intel® FPGA IP for Hardware Testing
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. RS-FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. TX PMA Control Signals
3.4.7. RX PMA Status Signals
3.4.8. TX and RX PMA and Core Interface FIFO Signals
3.4.9. PMA Avalon® Memory Mapped Interface Signals
3.4.10. Datapath Avalon® Memory Mapped Interface Signals
3.5.1. Parallel Data Mapping Information
3.5.2. TX and RX Parallel Data Mapping Information for Different Configurations
3.5.3. Example of TX Parallel Data for PMA Width = 8, 10, 16, 20, 32 (X=1)
3.5.4. Example of TX Parallel Data for PMA width = 64 (X=2)
3.5.5. Example of TX Parallel Data for PMA width = 64 (X=2) for FEC Direct Mode
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Reset Signals—Descriptions
3.8.5. Status Signals—Descriptions
3.8.6. Run-time Reset Sequence—TX
3.8.7. Run-time Reset Sequence—RX
3.8.8. Run-time Reset Sequence—TX + RX
3.8.9. Run-time Reset Sequence—TX with FEC
6.1. Implementing the F-tile PMA/FEC Direct PHY Design
6.2. Instantiating the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
6.3. Implementing a RS-FEC Direct Design in the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
6.4. Instantiating the F-Tile Reference and System PLL Clocks Intel® FPGA IP
6.5. Enabling Custom Cadence Generation Ports and Logic
6.6. Connecting the F-tile PMA/FEC Direct PHY Design IP
6.7. Simulating the F-Tile PMA/FEC Direct PHY Design
6.8. F-tile Interface Planning
Visible to Intel only — GUID: lfn1616520707978
Ixiasoft
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
Signal Name | Clocks Domain/Resets | Direction | Description |
---|---|---|---|
rx_clkout [(N*X)-1:0] rx_clkout2 [(N*X)-1:0]] tx_clkout [(N*X)-1:0] tx_clkout2 [(N*X)-1:0] |
N/A | output | Refer to Clock Ports |
tx_coreclkin [N*X-1:0] | N/A | input | The FPGA core clock. Drives the write side of the TX FIFO. |
rx_coreclkin [N*X-1:0] | N/A | input | The FPGA core clock. Drives the read side of the RX FIFO. |
tx_pll_refclk_link [N-1:0] 25
Note: This signal is single bit when Enable TX FGT PLL cascade mode is enabled.
|
N/A | input | This is neither physical nor logical pin. You connect this to <out_refclk_fgt_<X> > port from the F-Tile Reference and System PLL Clocks Intel® FPGA IP 26. |
rx_cdr_refclk_link [N-1:0]
Note: This signal is not available when Enable TX FGT PLL cascade mode is enabled.
|
N/A | input | This is neither physical nor logical pin. You connect this to <out_refclk_fgt_<X> > port from the F-Tile Reference and System PLL Clocks Intel® FPGA IP 26. |
system_pll_clk_link | N/A | input | This is neither physical nor logical pin. You connect this to <out_systempll_clk_0 > port from the F-Tile Reference and System PLL Clocks Intel® FPGA IP 26. |
tx_pll_locked [N-1:0] | asynchronous | output | TX PLL locked signal for both FGT and FHT to reference clock within the PPM threshold status signal. 1’b1 = locked. 1’b0 = not locked. |
rx_cdr_divclk_link0 | N/A | output | Clock output from FGT CDR divided clock. This signal is used for CPRI. F-tile includes a total of two such pins. This port is neither physical nor logical pin. If you enable, you must set the number of system copies to 1. This port must connect to the out_cdrclk port of the F-Tile Reference and System PLL Clocks Intel® FPGA IP . This port cannot be enabled in a quad that has primary PLL configuration26. |
rx_cdr_divclk_link1 | N/A | output | Clock output from FGT CDR divided clock. This signal is used for CPRI. In whole F tile, there are 2 of such pins. This port is neither physical nor logical pin. If you enable this port, you must set number of system copies to 1. This port must connect to the out_cdrclk port of F-Tile Reference and System PLL Clocks Intel® FPGA IP. You cannot enable a quad that has primary PLL configuration in PLL cascade mode. Not supported for FHT26. |
25 Ports ending in "_link" must connect to the F-Tile Reference and System PLL Clocks Intel® FPGA IP. These ports cannot be simulated.
26 Refer to Guidelines for F-Tile Reference and System PLL Clocks Intel FPGA IP Usage for reference clock and system PLL usage.