Visible to Intel only — GUID: edz1615419862629
Ixiasoft
2.1. What's New In This Version
2.2. Partial Reconfiguration Terminology
2.3. Partial Reconfiguration Process Sequence
2.4. Internal Host Partial Reconfiguration
2.5. External Host Partial Reconfiguration
2.6. Partial Reconfiguration Design Flow
2.7. Partial Reconfiguration Design Considerations
2.8. Hierarchical Partial Reconfiguration
2.9. Partial Reconfiguration Design Timing Analysis
2.10. Partial Reconfiguration Design Simulation
2.11. Partial Reconfiguration Design Debugging
2.12. Partial Reconfiguration Security ( Intel® Stratix® 10 Designs and Intel Agilex® 7 Designs)
2.13. PR Bitstream Compression and Encryption ( Intel® Arria® 10 and Intel® Cyclone® 10 GX Designs)
2.14. Avoiding PR Programming Errors
2.15. Exporting a Version-Compatible Compilation Database for PR Designs
2.16. Creating a Partial Reconfiguration Design Revision History
2.6.1. Step 1: Identify Partial Reconfiguration Resources
2.6.2. Step 2: Create Design Partitions
2.6.3. Step 3: Floorplan the Design
2.6.4. Step 4: Add the Partial Reconfiguration Controller Intel® FPGA IP
2.6.5. Step 5: Define Personas
2.6.6. Step 6: Create Revisions for Personas
2.6.7. Step 7: Compile the Base Revision and Export the Static Region
2.6.8. Step 8: Setup PR Implementation Revisions
2.6.9. Step 9: Program the FPGA Device
2.6.9.1. Generating PR Bitstream Files
2.6.9.2. Generating PR Bitstream Files
2.6.9.3. Partial Reconfiguration Bitstream Compatibility Checking
2.6.9.4. Raw Binary Programming File Byte Sequence Transmission Examples
2.6.9.5. Generating a Merged .pmsf File from Multiple .pmsf Files ( Intel® Arria® 10 and Intel® Cyclone® 10 GX Designs)
2.7.1. Partial Reconfiguration Design Guidelines
2.7.2. PR Design Timing Closure Best Practices
2.7.3. PR File Management
2.7.4. Evaluating PR Region Initial Conditions
2.7.5. Creating Wrapper Logic for PR Regions
2.7.6. Creating Freeze Logic for PR Regions
2.7.7. Resetting the PR Region Registers
2.7.8. Promoting Global Signals in a PR Region
2.7.9. Planning Clocks and other Global Routing
2.7.10. Implementing Clock Enable for On-Chip Memories
3.1. Internal and External PR Host Configurations
3.2. Partial Reconfiguration Controller Intel FPGA IP
3.3. Partial Reconfiguration Controller Intel Arria® 10/Cyclone® 10 FPGA IP
3.4. Partial Reconfiguration External Configuration Controller Intel FPGA IP
3.5. Partial Reconfiguration Region Controller Intel® FPGA IP
3.6. Avalon® Memory-Mapped Partial Reconfiguration Freeze Bridge IP
3.7. Avalon® Streaming Partial Reconfiguration Freeze Bridge IP
3.8. Generating and Simulating Intel® FPGA IP
3.9. Intel® Quartus® Prime Pro Edition User Guide: Partial Reconfiguration Archive
3.10. Partial Reconfiguration Solutions IP User Guide Revision History
3.3.1. Agent Interface
3.3.2. Reconfiguration Sequence
3.3.3. Interrupt Interface
3.3.4. Parameters
3.3.5. Ports
3.3.6. Timing Specifications
3.3.7. PR Control Block and CRC Block Verilog HDL Manual Instantiation
3.3.8. PR Control Block and CRC Block VHDL Manual Instantiation
3.3.9. PR Control Block Signals
3.3.10. Configuring an External Host for Intel® Arria® 10 or Intel® Cyclone® 10 GX Designs
3.8.1. Specifying the IP Core Parameters and Options ( Intel® Quartus® Prime Pro Edition)
3.8.2. Running the Freeze Bridge Update script
3.8.3. IP Core Generation Output ( Intel® Quartus® Prime Pro Edition)
3.8.4. Intel® Arria® 10 and Intel® Cyclone® 10 GX PR Control Block Simulation Model
3.8.5. Generating the PR Persona Simulation Model
3.8.6. Secure Device Manager Partial Reconfiguration Simulation Model
Visible to Intel only — GUID: edz1615419862629
Ixiasoft
2.12.2. PR Bitstream Authentication ( Intel® Stratix® 10 Designs)
PR bitstream authentication helps to ensure that the firmware and the PR bitstream are from a trusted source, by provisioning the FPGA device with the owner public root key. Authentication is a basic component of device security and bitstream protection.
In PR bitstream authentication, the signed base bitstream must first be configured to the device. Then, the signed PR bitstream is used to configure one or more partial reconfiguration regions of the FPGA device. The signed PR bitstream must match the configured static region.
The following use cases summarize successful and unsuccessful PR bitstream authentication:
PR Authentication Success Use Case:
- Partial Reconfiguration with Authenticated PR Bitstream—in a successful PR authentication use case, the designer performs full chip configuration using an authenticated .sof file. The designer can only configure the partially reconfigurable regions of the FPGA that are signed with the design signature private key, and that match the currently configured static region. The PR bitstreams are authenticated to ensure that only authorized users can provide the PR bitstream.
PR Authentication Failure Scenarios
The following are some PR authentication failure scenarios:
- PR Bitstream Is Unsigned—when the target FPGA device determines that the PR bitstream is unsigned, then the PR operation halts and PR bitstream security displays a PR error message.
- PR Bitstream Is Signed with Expired or Invalid Signature—when the target FPGA device determines that the PR bitstream is signed with an expired or invalid signature, then the PR operation halts and PR bitstream security displays a PR error message.
- PR Success after PR Failure from Expired or Invalid Signature—when PR of the target FPGA device fails with an error caused by an expired or invalid signature, you can provide a bitstream signed with a valid key to perform the PR operation successfully.
Related Information