Visible to Intel only — GUID: sam1438868907304
Ixiasoft
1. Intel® Stratix® 10 I/O Overview
2. Intel® Stratix® 10 I/O Architecture and Features
3. Intel® Stratix® 10 I/O Design Considerations
4. Intel® Stratix® 10 I/O Implementation Guides
5. GPIO Intel® FPGA IP Reference
6. Intel® Stratix® 10 General Purpose I/O User Guide Archives
7. Document Revision History for Intel® Stratix® 10 General Purpose I/O User Guide
2.1. I/O Standards and Voltage Levels in Intel® Stratix® 10 Devices
2.2. I/O Element Structure in Intel® Stratix® 10 Devices
2.3. Programmable IOE Features in Intel® Stratix® 10 Devices
2.4. On-Chip I/O Termination in Intel® Stratix® 10 Devices
2.5. External I/O Termination for Intel® Stratix® 10 Devices
3.1. Guideline: VREF Sources and VREF Pins
3.2. Guideline: Observe Device Absolute Maximum Rating for 3.0 V Interfacing
3.3. Guideline: Voltage-Referenced and Non-Voltage Referenced I/O Standards
3.4. Guideline: Do Not Drive I/O Pins During Power Sequencing
3.5. Guideline: Intel® Stratix® 10 I/O Buffer During Power Up, Configuration, and Power Down
3.6. Guideline: Maximum DC Current Restrictions
3.7. Guideline: Use Only One Voltage for All 3 V I/O Banks
3.8. Guideline: I/O Standards Limitation for Intel® Stratix® 10 TX 400
3.9. Guideline: I/O Standards Limitation for Intel® Stratix® 10 GX 400 and SX 400
Visible to Intel only — GUID: sam1438868907304
Ixiasoft
2.4.1. RS OCT without Calibration in Intel® Stratix® 10 Devices
Intel® Stratix® 10 devices support RS OCT for single-ended and voltage-referenced I/O standards. RS OCT without calibration is supported on output only.
I/O Standard | Uncalibrated OCT (Output) |
---|---|
RS (Ω) | |
3.0 V LVTTL/3.0 V LVCMOS | 25, 50 |
2.5 V LVCMOS | 25, 50 |
1.8 V LVCMOS | 25, 50 |
1.5 V LVCMOS | 25, 50 |
1.2 V LVCMOS | 25, 50 |
SSTL-18 Class I | 50 |
SSTL-18 Class II | 25 |
SSTL-15 Class I | 50 |
SSTL-15 Class II | 25 |
SSTL-15 | 34, 40 |
SSTL-135 | 34, 40 |
SSTL-125 | 34, 40 |
SSTL-12 | 34, 40, 60, 120, 240 |
POD12 | 34, 40, 48, 60 |
1.8 V HSTL Class I | 50 |
1.8 V HSTL Class II | 25 |
1.5 V HSTL Class I | 50 |
1.5 V HSTL Class II | 25 |
1.2 V HSTL Class I | 50 |
1.2 V HSTL Class II | 25 |
HSUL-12 | 34, 40, 48, 60, 80 |
Differential SSTL-18 Class I | 50 |
Differential SSTL-18 Class II | 25 |
Differential SSTL-15 Class I | 50 |
Differential SSTL-15 Class II | 25 |
Differential SSTL-15 | 34, 40 |
Differential SSTL-15 Class I | 50 |
Differential SSTL-15 Class II | 25 |
Differential SSTL-135 | 34, 40 |
Differential SSTL-125 | 34, 40 |
Differential SSTL-12 | 34, 40, 60, 120, 240 |
Differential POD12 | 34, 40, 48, 60 |
Differential 1.8 V HSTL Class I | 50 |
Differential 1.8 V HSTL Class II | 25 |
Differential 1.5 V HSTL Class I | 50 |
Differential 1.5 V HSTL Class II | 25 |
Differential 1.2 V HSTL Class I | 50 |
Differential 1.2 V HSTL Class II | 25 |
Differential HSUL-12 | 34, 40, 48, 60, 80 |
Driver-impedance matching provides the I/O driver with controlled output impedance that closely matches the impedance of the transmission line. As a result, you can significantly reduce signal reflections on PCB traces.
If you use impedance matching, you cannot specify the current strength.
Figure 10. RS OCT Without CalibrationThis figure shows the RS as the intrinsic impedance of the output transistors.