Visible to Intel only — GUID: GUID-E41B6B00-0709-4D32-9C63-100D253FADDC
Visible to Intel only — GUID: GUID-E41B6B00-0709-4D32-9C63-100D253FADDC
oneMKL Summary Statistics Usage Model
Description
A typical algorithm for random number generators is as follows:
Create and initialize the object for the dataset.
Call the summary statistics routine to calculate the appropriate estimate.
The following example demonstrates how to calculate mean values for a 3-dimentional dataset filled with random numbers. For dataset creation, the make_dataset helper function is used.
Example of Summary Statistics Usage
Buffer API
#include <iostream>
#include <vector>
#include "CL/sycl.hpp"
#include "oneapi/mkl/stats.hpp"
int main() {
sycl::queue queue;
const size_t n_observations = 1000;
const size_t n_dims = 3;
std::vector<float> x(n_observations * n_dims);
// fill x storage with random numbers
for(int i = 0; i < n_dims, i++) {
for(int j = 0; j < n_observations; j++) {
x[j + i * n_observations] = float(std::rand()) / float(RAND_MAX);
}
}
//create buffer for dataset
sycl::buffer<float, 1> x_buf(x.data(), x.size());
// create buffer for mean values
sycl::buffer<float, 1> mean_buf(n_dims);
// create mkl::stats::dataset
auto dataset = oneapi::mkl::stats::make_dataset<mkl::stats::layout::row_major>(n_dims, n_observations, x_buf);
oneapi::mkl::stats::mean(queue, dataset, mean_buf);
// create host accessor for mean_buf to print results
auto acc = mean_buf.template get_access<sycl::access::mode::read>();
for(int i = 0; i < n_dims; i++) {
std::cout << "Mean value for dimension " << i << ": "<< acc[i]<<
std::endl;
}
return 0;
}
USM API
#include <iostream>
#include <vector>
#include "CL/sycl.hpp"
#include "oneapi/mkl/stats.hpp"
int main() {
sycl::queue queue;
const size_t n_observations = 1000;
const size_t n_dims = 3;
sycl::usm_allocator<float, sycl::usm::alloc::shared> allocator(queue);
std::vector<float, decltype(allocator)> x(n_observations * n_dims, allocator);
// fill x storage with random numbers
for(int i = 0; i < n_dims, i++) {
for(int j = 0; j < n_observations; j++) {
x[j + i * n_observations] = float(std::rand()) / float(RAND_MAX);
}
}
std::vector<float, decltype(allocator)> mean_buf(n_dims, allocator);
// create mkl::stats::dataset
auto dataset = oneapi::mkl::stats::make_dataset<mkl::stats::layout::row_major>(n_dims, n_observations, x);
sycl::event event = oneapi::mkl::stats::mean(queue, dataset, mean);
event.wait();
for(int i = 0; i < n_dims; i++) {
std::cout << "Mean value for dimension " << i << ": "<< mean[i]<<
std::endl;
}
return 0;
}
You can also use USM with raw pointers by using the sycl::malloc_shared/malloc_device functions. Additionally, examples that demonstrate usage of summary statistics functionality are available in:
${MKL}/share/doc/mkl/examples/sycl/stats/source