Visible to Intel only — GUID: GUID-F466D488-A7AD-4D29-ACA3-B917DA55D24D
ZGELS Example Program in C
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
ZGELS Example.
==============
Program computes the minimum norm solution to the underdetermined linear
system A*X = B with full rank matrix A using LQ factorization,
where A is the coefficient matrix:
( -4.20, -3.44) ( -3.35, 1.52) ( 1.73, 8.85) ( 2.35, 0.34)
( -5.43, -8.81) ( -4.53, -8.47) ( 5.93, 3.75) ( -3.75, -5.66)
( -5.56, 3.39) ( 2.90, -9.22) ( 8.03, 9.37) ( 5.69, -0.47)
and B is the right-hand side matrix:
( -7.02, 4.80) ( 3.88, -2.59)
( 0.62, -2.40) ( 1.57, 3.24)
( 3.10, -2.19) ( -6.93, -5.99)
Description.
============
The routine solves overdetermined or underdetermined complex linear systems
involving an m-by-n matrix A, or its transpose, using a QR or LQ
factorization of A. It is assumed that A has full rank.
Several right hand side vectors b and solution vectors x can be handled
in a single call; they are stored as the columns of the m-by-nrhs right
hand side matrix B and the n-by-nrhs solution matrix X.
Example Program Results.
========================
ZGELS Example Program Results
Minimum norm solution
( -0.25, -0.04) ( -0.21, 0.42)
( 0.99, 0.27) ( -0.21, -0.43)
( 0.25, 0.43) ( -0.24, -0.13)
( -0.32, 0.14) ( -0.23, -0.09)
Details of LQ factorization
( 11.40, 0.00) ( 0.18, -0.14) ( -0.23, -0.52) ( -0.15, 0.01)
( 7.73, -0.39) ( 15.32, 0.00) ( -0.22, 0.42) ( 0.45, 0.17)
( 8.60, -5.68) ( 3.96, 6.46) ( 12.54, 0.00) ( -0.02, -0.47)
*/
#include <stdlib.h>
#include <stdio.h>
/* Complex datatype */
struct _dcomplex { double re, im; };
typedef struct _dcomplex dcomplex;
/* ZGELS prototype */
extern void zgels( char* trans, int* m, int* n, int* nrhs, dcomplex* a,
int* lda, dcomplex* b, int* ldb, dcomplex* work, int* lwork, int* info );
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, int m, int n, dcomplex* a, int lda );
/* Parameters */
#define M 3
#define N 4
#define NRHS 2
#define LDA M
#define LDB N
/* Main program */
int main() {
/* Locals */
int m = M, n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info, lwork;
dcomplex wkopt;
dcomplex* work;
/* Local arrays */
dcomplex a[LDA*N] = {
{-4.20, -3.44}, {-5.43, -8.81}, {-5.56, 3.39},
{-3.35, 1.52}, {-4.53, -8.47}, { 2.90, -9.22},
{ 1.73, 8.85}, { 5.93, 3.75}, { 8.03, 9.37},
{ 2.35, 0.34}, {-3.75, -5.66}, { 5.69, -0.47}
};
dcomplex b[LDB*NRHS] = {
{-7.02, 4.80}, { 0.62, -2.40}, { 3.10, -2.19}, { 0.00, 0.00},
{ 3.88, -2.59}, { 1.57, 3.24}, {-6.93, -5.99}, { 0.00, 0.00}
};
/* Executable statements */
printf( " ZGELS Example Program Results\n" );
/* Query and allocate the optimal workspace */
lwork = -1;
zgels( "No transpose", &m, &n, &nrhs, a, &lda, b, &ldb, &wkopt, &lwork,
&info );
lwork = (int)wkopt.re;
work = (dcomplex*)malloc( lwork*sizeof(dcomplex) );
/* Solve the equations A*X = B */
zgels( "No transpose", &m, &n, &nrhs, a, &lda, b, &ldb, work, &lwork,
&info );
/* Check for the full rank */
if( info > 0 ) {
printf( "The diagonal element %i of the triangular factor ", info );
printf( "of A is zero, so that A does not have full rank;\n" );
printf( "the minimum norm solution could not be computed.\n" );
exit( 1 );
}
/* Print minimum norm solution */
print_matrix( "Minimum norm solution", n, nrhs, b, ldb );
/* Print details of LQ factorization */
print_matrix( "Details of LQ factorization", m, n, a, lda );
/* Free workspace */
free( (void*)work );
exit( 0 );
} /* End of ZGELS Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, int m, int n, dcomplex* a, int lda ) {
int i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i+j*lda].re, a[i+j*lda].im );
printf( "\n" );
}
}
Parent topic: ZGELS Example