Developer Reference

Intel® oneAPI Math Kernel Library LAPACK Examples

ID 766877
Date 12/20/2021
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

SSYEVR Example Program in Fortran

*  Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
*  The information and material ("Material") provided below is owned by Intel
*  Corporation or its suppliers or licensors, and title to such Material remains
*  with Intel Corporation or its suppliers or licensors. The Material contains
*  proprietary information of Intel or its suppliers and licensors. The Material
*  is protected by worldwide copyright laws and treaty provisions. No part of
*  the Material may be copied, reproduced, published, uploaded, posted,
*  transmitted, or distributed in any way without Intel's prior express written
*  permission. No license under any patent, copyright or other intellectual
*  property rights in the Material is granted to or conferred upon you, either
*  expressly, by implication, inducement, estoppel or otherwise. Any license
*  under such intellectual property rights must be express and approved by Intel
*  in writing.
*  =============================================================================
*
*  SSYEVR Example.
*  ==============
*
*  Program computes the smallest eigenvalues and the corresponding
*  eigenvectors of a real symmetric matrix A using the Relatively Robust
*  Representations, where A is:
*
*    0.67  -0.20   0.19  -1.06   0.46
*   -0.20   3.82  -0.13   1.06  -0.48
*    0.19  -0.13   3.27   0.11   1.10
*   -1.06   1.06   0.11   5.86  -0.98
*    0.46  -0.48   1.10  -0.98   3.54
*
*  Description.
*  ============
*
*  The routine computes selected eigenvalues and, optionally, eigenvectors of
*  an n-by-n real symmetric matrix A. The eigenvector v(j) of A satisfies
*
*  A*v(j) = lambda(j)*v(j)
*
*  where lambda(j) is its eigenvalue. The computed eigenvectors are
*  orthonormal.
*  Eigenvalues and eigenvectors can be selected by specifying either a range
*  of values or a range of indices for the desired eigenvalues.
*
*  Example Program Results.
*  ========================
*
* SSYEVR Example Program Results
*
* The total number of eigenvalues found: 3
*
* Selected eigenvalues
*   0.43   2.14   3.37
*
* Selected eigenvectors (stored columnwise)
*  -0.98  -0.01  -0.08
*   0.01   0.02  -0.93
*   0.04  -0.69  -0.07
*  -0.18   0.19   0.31
*   0.07   0.69  -0.13
*  =============================================================================
*
*     .. Parameters ..
      INTEGER          N, NSELECT
      PARAMETER        ( N = 5, NSELECT = 3 )
      INTEGER          LDA, LDZ
      PARAMETER        ( LDA = N, LDZ = N )
      INTEGER          LWMAX
      PARAMETER        ( LWMAX = 1000 )
*
*     .. Local Scalars ..
      INTEGER          INFO, LWORK, LIWORK, IL, IU, M
      REAL             ABSTOL, VL, VU
*
*     .. Local Arrays ..
      INTEGER          ISUPPZ( N ), IWORK( LWMAX )
      REAL             A( LDA, N ), W( N ), Z( LDZ, NSELECT ),
     $                 WORK( LWMAX )
      DATA             A/
     $  0.67, 0.00, 0.00, 0.00, 0.00,
     $ -0.20, 3.82, 0.00, 0.00, 0.00,
     $  0.19,-0.13, 3.27, 0.00, 0.00,
     $ -1.06, 1.06, 0.11, 5.86, 0.00,
     $  0.46,-0.48, 1.10,-0.98, 3.54
     $                  /
*
*     .. External Subroutines ..
      EXTERNAL         SSYEVR
      EXTERNAL         PRINT_MATRIX
*
*     .. Intrinsic Functions ..
      INTRINSIC        INT, MIN
*
*     .. Executable Statements ..
      WRITE(*,*)'SSYEVR Example Program Results'
*     Negative ABSTOL means using the default value
      ABSTOL = -1.0
*     Set IL, IU to compute NSELECT smallest eigenvalues
      IL = 1
      IU = NSELECT
*
*     Query the optimal workspace.
*
      LWORK = -1
      LIWORK = -1
      CALL SSYEVR( 'Vectors', 'Indices', 'Upper', N, A, LDA, VL, VU, IL,
     $             IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
     $             LIWORK, INFO )
      LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
      LIWORK = MIN( LWMAX, IWORK( 1 ) )
*
*     Solve eigenproblem.
*
      CALL SSYEVR( 'Vectors', 'Indices', 'Upper', N, A, LDA, VL, VU, IL,
     $             IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
     $             LIWORK, INFO )
*
*     Check for convergence.
*
      IF( INFO.GT.0 ) THEN
         WRITE(*,*)'The algorithm failed to compute eigenvalues.'
         STOP
      END IF
*
*     Print the number of eigenvalues found.
*
      WRITE(*,'(/A,I2)')' The total number of eigenvalues found:', M
*
*     Print eigenvalues.
*
      CALL PRINT_MATRIX( 'Selected eigenvalues', 1, M, W, 1 )
*
*     Print eigenvectors.
*
      CALL PRINT_MATRIX( 'Selected eigenvectors (stored columnwise)',
     $                   N, M, Z, LDZ )
      STOP
      END
*
*     End of SSYEVR Example.
*
*  =============================================================================
*
*     Auxiliary routine: printing a matrix.
*
      SUBROUTINE PRINT_MATRIX( DESC, M, N, A, LDA )
      CHARACTER*(*)    DESC
      INTEGER          M, N, LDA
      REAL             A( LDA, * )
*
      INTEGER          I, J
*
      WRITE(*,*)
      WRITE(*,*) DESC
      DO I = 1, M
         WRITE(*,9998) ( A( I, J ), J = 1, N )
      END DO
*
 9998 FORMAT( 11(:,1X,F6.2) )
      RETURN
      END