Visible to Intel only — GUID: GUID-7E0F4F2E-F98D-46B2-91C9-5A6E297A60C2
LAPACKE_cheevd Example Program in C for Column Major Data Layout
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
LAPACKE_cheevd Example.
=======================
Program computes all eigenvalues and eigenvectors of a complex Hermitian
matrix A using divide and conquer algorithm, where A is:
( 3.40, 0.00) ( -2.36, -1.93) ( -4.68, 9.55) ( 5.37, -1.23)
( -2.36, 1.93) ( 6.94, 0.00) ( 8.13, -1.47) ( 2.07, -5.78)
( -4.68, -9.55) ( 8.13, 1.47) ( -2.14, 0.00) ( 4.68, 7.44)
( 5.37, 1.23) ( 2.07, 5.78) ( 4.68, -7.44) ( -7.42, 0.00)
Description.
============
The routine computes all eigenvalues and, optionally, eigenvectors of an
n-by-n complex Hermitian matrix A. The eigenvector v(j) of A satisfies
A*v(j) = lambda(j)*v(j)
where lambda(j) is its eigenvalue. The computed eigenvectors are
orthonormal.
If the eigenvectors are requested, then this routine uses a divide and
conquer algorithm to compute eigenvalues and eigenvectors.
Example Program Results.
========================
LAPACKE_cheevd (column-major, high-level) Example Program Results
Eigenvalues
-21.97 -0.05 6.46 16.34
Eigenvectors (stored columnwise)
( 0.41, 0.00) ( -0.34, 0.00) ( -0.69, 0.00) ( 0.49, 0.00)
( 0.02, -0.30) ( 0.32, -0.21) ( -0.57, -0.22) ( -0.59, -0.21)
( 0.18, 0.57) ( -0.42, -0.32) ( 0.06, 0.16) ( -0.35, -0.47)
( -0.62, -0.09) ( -0.58, 0.35) ( -0.15, -0.31) ( -0.10, -0.12)
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda );
extern void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda );
/* Parameters */
#define N 4
#define LDA N
/* Main program */
int main() {
/* Locals */
MKL_INT n = N, lda = LDA, info;
/* Local arrays */
float w[N];
MKL_Complex8 a[LDA*N] = {
{ 3.40f, 0.00f}, {-2.36f, 1.93f}, {-4.68f, -9.55f}, { 5.37f, 1.23f},
{ 0.00f, 0.00f}, { 6.94f, 0.00f}, { 8.13f, 1.47f}, { 2.07f, 5.78f},
{ 0.00f, 0.00f}, { 0.00f, 0.00f}, {-2.14f, 0.00f}, { 4.68f, -7.44f},
{ 0.00f, 0.00f}, { 0.00f, 0.00f}, { 0.00f, 0.00f}, {-7.42f, 0.00f}
};
/* Executable statements */
printf( "LAPACKE_cheevd (column-major, high-level) Example Program Results\n" );
/* Solve eigenproblem */
info = LAPACKE_cheevd( LAPACK_COL_MAJOR, 'V', 'L', n, a, lda, w );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm failed to compute eigenvalues.\n" );
exit( 1 );
}
/* Print eigenvalues */
print_rmatrix( "Eigenvalues", 1, n, w, 1 );
/* Print eigenvectors */
print_matrix( "Eigenvectors (stored columnwise)", n, n, a, lda );
exit( 0 );
} /* End of LAPACKE_cheevd Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i+j*lda].real, a[i+j*lda].imag );
printf( "\n" );
}
}
/* Auxiliary routine: printing a real matrix */
void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i+j*lda] );
printf( "\n" );
}
}
Parent topic: CHEEVD Example