Visible to Intel only — GUID: GUID-ADF2B8BF-657E-4E4D-9D77-164AD1C47506
LAPACKE_cgelsd Example Program in C for Row Major Data Layout
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
LAPACKE_cgelsd Example.
=======================
Program computes the minimum norm-solution to a complex linear least squares
problem using the singular value decomposition of A,
where A is the coefficient matrix:
( 4.55, -0.32) ( -4.36, -4.76) ( 3.99, -6.84) ( 8.03, -6.47)
( 8.87, -3.11) ( 0.02, 8.43) ( 5.43, -9.30) ( 2.28, 8.94)
( -0.74, 1.16) ( 3.80, -6.12) ( -7.24, 0.72) ( 2.21, 9.52)
and B is the right-hand side matrix:
( -8.25, 7.98) ( 2.91, -8.81)
( -5.04, 3.33) ( 6.19, 0.19)
( 7.98, -4.38) ( -5.96, 7.18)
Description.
============
The routine computes the minimum-norm solution to a complex linear least
squares problem: minimize ||b - A*x|| using the singular value
decomposition (SVD) of A. A is an m-by-n matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be handled
in a single call; they are stored as the columns of the m-by-nrhs right
hand side matrix B and the n-by-nrhs solution matrix X.
The effective rank of A is determined by treating as zero those singular
values which are less than rcond times the largest singular value.
Example Program Results.
========================
LAPACKE_cgelsd (row-major, high-level) Example Program Results
Minimum norm solution
( -0.08, 0.09) ( 0.04, 0.16)
( -0.17, 0.10) ( 0.17, -0.47)
( -0.92, -0.01) ( 0.71, -0.41)
( -0.47, -0.26) ( 0.69, 0.02)
Effective rank = 3
Singular values
20.01 18.21 7.88
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda );
extern void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda );
/* Parameters */
#define M 3
#define N 4
#define NRHS 2
#define LDA N
#define LDB NRHS
/* Main program */
int main() {
/* Locals */
MKL_INT m = M, n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info, rank;
/* Negative rcond means using default (machine precision) value */
float rcond = -1.0;
/* Local arrays */
float s[M];
MKL_Complex8 a[LDA*M] = {
{ 4.55f, -0.32f}, {-4.36f, -4.76f}, { 3.99f, -6.84f}, { 8.03f, -6.47f},
{ 8.87f, -3.11f}, { 0.02f, 8.43f}, { 5.43f, -9.30f}, { 2.28f, 8.94f},
{-0.74f, 1.16f}, { 3.80f, -6.12f}, {-7.24f, 0.72f}, { 2.21f, 9.52f}
};
MKL_Complex8 b[LDB*N] = {
{-8.25f, 7.98f}, { 2.91f, -8.81f},
{-5.04f, 3.33f}, { 6.19f, 0.19f},
{ 7.98f, -4.38f}, {-5.96f, 7.18f},
{ 0.00f, 0.00f}, { 0.00f, 0.00f}
};
/* Executable statements */
printf( "LAPACKE_cgelsd (row-major, high-level) Example Program Results\n" );
/* Solve the equations A*X = B */
info = LAPACKE_cgelsd( LAPACK_ROW_MAJOR, m, n, nrhs, a, lda, b, ldb,
s, rcond, &rank );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm computing SVD failed to converge;\n" );
printf( "the least squares solution could not be computed.\n" );
exit( 1 );
}
/* Print minimum norm solution */
print_matrix( "Minimum norm solution", n, nrhs, b, ldb );
/* Print effective rank */
printf( "\n Effective rank = %6i\n", rank );
/* Print singular values */
print_rmatrix( "Singular values", 1, m, s, 1 );
exit( 0 );
} /* End of LAPACKE_cgelsd Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i*lda+j].real, a[i*lda+j].imag );
printf( "\n" );
}
}
/* Auxiliary routine: printing a real matrix */
void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i*lda+j] );
printf( "\n" );
}
}
Parent topic: CGELSD Example