Visible to Intel only — GUID: GUID-40BBBB30-51D2-44BF-B7D8-4A8AD2A84F22
LAPACKE_cheev Example Program in C for Row Major Data Layout
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
LAPACKE_cheev Example.
======================
Program computes all eigenvalues and eigenvectors of a complex Hermitian
matrix A:
( 9.14, 0.00) ( -4.37, -9.22) ( -1.98, -1.72) ( -8.96, -9.50)
( -4.37, 9.22) ( -3.35, 0.00) ( 2.25, -9.51) ( 2.57, 2.40)
( -1.98, 1.72) ( 2.25, 9.51) ( -4.82, 0.00) ( -3.24, 2.04)
( -8.96, 9.50) ( 2.57, -2.40) ( -3.24, -2.04) ( 8.44, 0.00)
Description.
============
The routine computes all eigenvalues and, optionally, eigenvectors of an
n-by-n complex Hermitian matrix A. The eigenvector v(j) of A satisfies
A*v(j) = lambda(j)*v(j)
where lambda(j) is its eigenvalue. The computed eigenvectors are
orthonormal.
Example Program Results.
========================
LAPACKE_cheev (row-major, high-level) Example Program Results
Eigenvalues
-16.00 -6.76 6.67 25.51
Eigenvectors (stored columnwise)
( 0.34, 0.00) ( -0.55, 0.00) ( 0.31, 0.00) ( -0.70, 0.00)
( 0.44, -0.54) ( 0.26, 0.18) ( 0.45, 0.29) ( 0.22, -0.28)
( -0.48, -0.37) ( -0.52, -0.02) ( -0.05, 0.57) ( 0.15, 0.08)
( 0.10, -0.12) ( -0.50, 0.28) ( -0.23, -0.48) ( 0.34, -0.49)
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda );
extern void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda );
/* Parameters */
#define N 4
#define LDA N
/* Main program */
int main() {
/* Locals */
MKL_INT n = N, lda = LDA, info;
/* Local arrays */
float w[N];
MKL_Complex8 a[LDA*N] = {
{ 9.14f, 0.00f}, { 0.00f, 0.00f}, { 0.00f, 0.00f}, { 0.00f, 0.00f},
{-4.37f, 9.22f}, {-3.35f, 0.00f}, { 0.00f, 0.00f}, { 0.00f, 0.00f},
{-1.98f, 1.72f}, { 2.25f, 9.51f}, {-4.82f, 0.00f}, { 0.00f, 0.00f},
{-8.96f, 9.50f}, { 2.57f, -2.40f}, {-3.24f, -2.04f}, { 8.44f, 0.00f}
};
/* Executable statements */
printf( "LAPACKE_cheev (row-major, high-level) Example Program Results\n" );
/* Solve eigenproblem */
info = LAPACKE_cheev( LAPACK_ROW_MAJOR, 'V', 'L', n, a, lda, w );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm failed to compute eigenvalues.\n" );
exit( 1 );
}
/* Print eigenvalues */
print_rmatrix( "Eigenvalues", 1, n, w, 1 );
/* Print eigenvectors */
print_matrix( "Eigenvectors (stored columnwise)", n, n, a, lda );
exit( 0 );
} /* End of LAPACKE_cheev Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i*lda+j].real, a[i*lda+j].imag );
printf( "\n" );
}
}
/* Auxiliary routine: printing a real matrix */
void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i*lda+j] );
printf( "\n" );
}
}
Parent topic: CHEEV Example