Visible to Intel only — GUID: GUID-79522039-517E-4942-9C6B-B5386726CDDD
LAPACKE_dsyev Example Program in C for Column Major Data Layout
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
LAPACKE_dsyev Example.
======================
Program computes all eigenvalues and eigenvectors of a real symmetric
matrix A:
1.96 -6.49 -0.47 -7.20 -0.65
-6.49 3.80 -6.39 1.50 -6.34
-0.47 -6.39 4.17 -1.51 2.67
-7.20 1.50 -1.51 5.70 1.80
-0.65 -6.34 2.67 1.80 -7.10
Description.
============
The routine computes all eigenvalues and, optionally, eigenvectors of an
n-by-n real symmetric matrix A. The eigenvector v(j) of A satisfies
A*v(j) = lambda(j)*v(j)
where lambda(j) is its eigenvalue. The computed eigenvectors are
orthonormal.
Example Program Results.
========================
LAPACKE_dsyev (column-major, high-level) Example Program Results
Eigenvalues
-11.07 -6.23 0.86 8.87 16.09
Eigenvectors (stored columnwise)
-0.30 -0.61 0.40 -0.37 0.49
-0.51 -0.29 -0.41 -0.36 -0.61
-0.08 -0.38 -0.66 0.50 0.40
0.00 -0.45 0.46 0.62 -0.46
-0.80 0.45 0.17 0.31 0.16
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda );
/* Parameters */
#define N 5
#define LDA N
/* Main program */
int main() {
/* Locals */
MKL_INT n = N, lda = LDA, info;
/* Local arrays */
double w[N];
double a[LDA*N] = {
1.96, 0.00, 0.00, 0.00, 0.00,
-6.49, 3.80, 0.00, 0.00, 0.00,
-0.47, -6.39, 4.17, 0.00, 0.00,
-7.20, 1.50, -1.51, 5.70, 0.00,
-0.65, -6.34, 2.67, 1.80, -7.10
};
/* Executable statements */
printf( "LAPACKE_dsyev (column-major, high-level) Example Program Results\n" );
/* Solve eigenproblem */
info = LAPACKE_dsyev( LAPACK_COL_MAJOR, 'V', 'U', n, a, lda, w );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm failed to compute eigenvalues.\n" );
exit( 1 );
}
/* Print eigenvalues */
print_matrix( "Eigenvalues", 1, n, w, 1 );
/* Print eigenvectors */
print_matrix( "Eigenvectors (stored columnwise)", n, n, a, lda );
exit( 0 );
} /* End of LAPACKE_dsyev Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i+j*lda] );
printf( "\n" );
}
}
Parent topic: DSYEV Example