Visible to Intel only — GUID: GUID-14E9D292-9E99-4CC8-BE62-8BC631408B06
Visible to Intel only — GUID: GUID-14E9D292-9E99-4CC8-BE62-8BC631408B06
namespace dnnl::threadpool_interop
Overview
Threadpool interoperability namespace. More…
namespace threadpool_interop { // structs struct threadpool_iface; // global functions dnnl::stream make_stream( const dnnl::engine& aengine, threadpool_iface* threadpool ); threadpool_iface* get_threadpool(const dnnl::stream& astream); status sgemm( char transa, char transb, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const float* A, dnnl_dim_t lda, const float* B, dnnl_dim_t ldb, float beta, float* C, dnnl_dim_t ldc, threadpool_iface* threadpool ); status gemm_u8s8s32( char transa, char transb, char offsetc, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const uint8_t* A, dnnl_dim_t lda, uint8_t ao, const int8_t* B, dnnl_dim_t ldb, int8_t bo, float beta, int32_t* C, dnnl_dim_t ldc, const int32_t* co, threadpool_iface* threadpool ); status gemm_s8s8s32( char transa, char transb, char offsetc, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const int8_t* A, dnnl_dim_t lda, int8_t ao, const int8_t* B, dnnl_dim_t ldb, int8_t bo, float beta, int32_t* C, dnnl_dim_t ldc, const int32_t* co, threadpool_iface* threadpool ); } // namespace threadpool_interop
Detailed Documentation
Threadpool interoperability namespace.
Global Functions
dnnl::stream make_stream( const dnnl::engine& aengine, threadpool_iface* threadpool )
Constructs an execution stream for the specified engine and threadpool.
Parameters:
aengine |
Engine to create the stream on. |
threadpool |
Pointer to an instance of a C++ class that implements dnnl::threapdool_iface interface. |
Returns:
An execution stream.
See also:
Using oneDNN with Threadpool-Based Threading
threadpool_iface* get_threadpool(const dnnl::stream& astream)
Returns the pointer to a threadpool that is used by an execution stream.
Parameters:
astream |
An execution stream. |
Returns:
Output pointer to an instance of a C++ class that implements dnnl::threapdool_iface interface or NULL if the stream was created without threadpool.
See also:
Using oneDNN with Threadpool-Based Threading
status sgemm( char transa, char transb, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const float* A, dnnl_dim_t lda, const float* B, dnnl_dim_t ldb, float beta, float* C, dnnl_dim_t ldc, threadpool_iface* threadpool )
Performs single-precision matrix-matrix multiply.
The operation is defined as:
C := alpha * op( A ) * op( B ) + beta * C
where
op( X ) = X or op( X ) = X**T,
alpha and beta are scalars, and
A, B, and C are matrices:
op( A ) is an MxK matrix,
op( B ) is an KxN matrix,
C is an MxN matrix.
The matrices are assumed to be stored in row-major order (the elements in each of the matrix rows are contiguous in memory).
Parameters:
transa |
Transposition flag for matrix A: ‘N’ or ‘n’ means A is not transposed, and ‘T’ or ‘t’ means that A is transposed. |
transb |
Transposition flag for matrix B: ‘N’ or ‘n’ means B is not transposed, and ‘T’ or ‘t’ means that B is transposed. |
M |
The M dimension. |
N |
The N dimension. |
K |
The K dimension. |
alpha |
The alpha parameter that is used to scale the product of matrices A and B. |
A |
A pointer to the A matrix data. |
lda |
The leading dimension for the matrix A. |
B |
A pointer to the B matrix data. |
ldb |
The leading dimension for the matrix B. |
beta |
The beta parameter that is used to scale the matrix C. |
C |
A pointer to the C matrix data. |
ldc |
The leading dimension for the matrix C. |
threadpool |
A pointer to a threadpool interface (only when built with the THREADPOOL CPU runtime). |
Returns:
dnnl_success / dnnl::status::success on success and a status describing the error otherwise.
status gemm_u8s8s32( char transa, char transb, char offsetc, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const uint8_t* A, dnnl_dim_t lda, uint8_t ao, const int8_t* B, dnnl_dim_t ldb, int8_t bo, float beta, int32_t* C, dnnl_dim_t ldc, const int32_t* co, threadpool_iface* threadpool )
Performs integer matrix-matrix multiply on 8-bit unsigned matrix A, 8-bit signed matrix B, and 32-bit signed resulting matrix C.
The operation is defined as:
C := alpha * (op(A) - A_offset) * (op(B) - B_offset) + beta * C + C_offset
where
op( X ) = X or op( X ) = X**T,
alpha and beta are scalars, and
A, B, and C are matrices:
op( A ) is an MxK matrix,
op( B ) is an KxN matrix,
C is an MxN matrix.
A_offset is an MxK matrix with every element equal the ao value,
B_offset is an KxN matrix with every element equal the bo value,
C_offset is an MxN matrix which is defined by the co array of size len :
if offsetc = F : the len must be at least 1,
if offsetc = C : the len must be at least max(1, m),
if offsetc = R : the len must be at least max(1, n),
The matrices are assumed to be stored in row-major order (the elements in each of the matrix rows are contiguous in memory).
Parameters:
transa |
Transposition flag for matrix A: ‘N’ or ‘n’ means A is not transposed, and ‘T’ or ‘t’ means that A is transposed. |
transb |
Transposition flag for matrix B: ‘N’ or ‘n’ means B is not transposed, and ‘T’ or ‘t’ means that B is transposed. |
offsetc |
Flag specifying how offsets should be applied to matrix C:
|
M |
The M dimension. |
N |
The N dimension. |
K |
The K dimension. |
alpha |
The alpha parameter that is used to scale the product of matrices A and B. |
A |
A pointer to the A matrix data. |
lda |
The leading dimension for the matrix A. |
ao |
The offset value for the matrix A. |
B |
A pointer to the B matrix data. |
ldb |
The leading dimension for the matrix B. |
bo |
The offset value for the matrix B. |
beta |
The beta parameter that is used to scale the matrix C. |
C |
A pointer to the C matrix data. |
ldc |
The leading dimension for the matrix C. |
co |
An array of offset values for the matrix C. The number of elements in the array depends on the value of offsetc. |
threadpool |
A pointer to a threadpool interface (only when built with the THREADPOOL CPU runtime). |
Returns:
dnnl_success / dnnl::status::success on success and a status describing the error otherwise.
status gemm_s8s8s32( char transa, char transb, char offsetc, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const int8_t* A, dnnl_dim_t lda, int8_t ao, const int8_t* B, dnnl_dim_t ldb, int8_t bo, float beta, int32_t* C, dnnl_dim_t ldc, const int32_t* co, threadpool_iface* threadpool )
Performs integer matrix-matrix multiply on 8-bit signed matrix A, 8-bit signed matrix B, and 32-bit signed resulting matrix C.
The operation is defined as:
C := alpha * (op(A) - A_offset) * (op(B) - B_offset) + beta * C + C_offset
where
op( X ) = X or op( X ) = X**T,
alpha and beta are scalars, and
A, B, and C are matrices:
op( A ) is an MxK matrix,
op( B ) is an KxN matrix,
C is an MxN matrix.
A_offset is an MxK matrix with every element equal the ao value,
B_offset is an KxN matrix with every element equal the bo value,
C_offset is an MxN matrix which is defined by the co array of size len :
if offsetc = F : the len must be at least 1,
if offsetc = C : the len must be at least max(1, m),
if offsetc = R : the len must be at least max(1, n),
The matrices are assumed to be stored in row-major order (the elements in each of the matrix rows are contiguous in memory).
Parameters:
transa |
Transposition flag for matrix A: ‘N’ or ‘n’ means A is not transposed, and ‘T’ or ‘t’ means that A is transposed. |
transb |
Transposition flag for matrix B: ‘N’ or ‘n’ means B is not transposed, and ‘T’ or ‘t’ means that B is transposed. |
offsetc |
Flag specifying how offsets should be applied to matrix C:
|
M |
The M dimension. |
N |
The N dimension. |
K |
The K dimension. |
alpha |
The alpha parameter that is used to scale the product of matrices A and B. |
A |
A pointer to the A matrix data. |
lda |
The leading dimension for the matrix A. |
ao |
The offset value for the matrix A. |
B |
A pointer to the B matrix data. |
ldb |
The leading dimension for the matrix B. |
bo |
The offset value for the matrix B. |
beta |
The beta parameter that is used to scale the matrix C. |
C |
A pointer to the C matrix data. |
ldc |
The leading dimension for the matrix C. |
co |
An array of offset values for the matrix C. The number of elements in the array depends on the value of offsetc. |
threadpool |
A pointer to a threadpool interface (only when built with the THREADPOOL CPU runtime). |
Returns:
dnnl_success / dnnl::status::success on success and a status describing the error otherwise.