Visible to Intel only — GUID: GUID-AACA74F6-642D-4F19-81EA-D681B6F05863
Visible to Intel only — GUID: GUID-AACA74F6-642D-4F19-81EA-D681B6F05863
Configure Project
After you create a project, the Project Properties dialog box opens. In the Analysis Target tab, you can specify the target executable, set important project properties, and review current project properties.
Always check project property values before analyzing a new target.
For an existing project, you can also access this tab:
- From the Intel Advisor GUI, choose File > Project Properties.
- Click the icon on the left-side toolbar.
- From the Visual Studio* menu, choose Project > Intel Advisor [version] Project Properties...
NOTE:In Visual Studio* 2022, Intel Advisor provides lightweight integration. You can configure and compile your application and open the standalone Intel Advisor interface from the Visual Studio for further analysis. All your settings will be inherited by the standalone Intel Advisor project.
Analysis Target Tab Overview
In the Analysis Target tab, select an analysis type from list (on the left) to display and set project properties.
Analysis Type selector |
Select an analysis type to configure. Different project properties are available in the Analysis Properties region depending on the analysis type selected. The following analysis types are available:
|
Analysis Properties |
Set project properties for the analysis type selected in the Analysis Type region. |
Analysis Target Tab Controls
The following table covers project properties applicable to all analysis types. To view controls applicable only to a specific analysis type, use the links immediately below:
- Survey Analysis Controls
- Trip Counts and FLOPS Controls
- Suitability Analysis Controls
- MAP Analysis Controls
- Dependencies Analysis Controls
Common Controls
The following controls are common for all analysis types. Specify the properties in the Survey Hotspot Analysis tab and check that the Inherit settings from the Survey Hotspots Analysis Type checkbox is enabled in other tabs to share the properties for all analyses.
Use This |
To Do This |
---|---|
Target type drop-down |
If you choose Attach to Process, you can either inherit settings from the Survey Hotspots Analysis Type or specify the needed settings. |
Inherit settings from Visual Studio project checkbox and field (Visual Studio* IDE only) |
Inherit Intel Advisor project properties from the Visual Studio* startup project (enable). If enabled, the Application, Application parameters, and Working directory fields are pre-filled and cannot be modified.
NOTE:
In Visual Studio* 2022, Intel Advisor provides lightweight integration. You can configure and compile your application and open the standalone Intel Advisor interface from the Visual Studio for further analysis. All your settings will be inherited by the standalone Intel Advisor project.
|
Application field and Browse... button |
Select an analysis target executable or script. If you specify a script in this field, consider specifying the executable in the Advanced > Child application field (required for Dependencies analysis). |
Application parameters field and Modify... button |
Specify runtime arguments to use when performing analysis (equivalent to command line arguments). |
Use application directory as working directory checkbox |
Automatically use the value in the Application directory to pre-fill the Working directory value (enable). |
Working directory field and Browse... button |
Select the working directory. |
User-defined environment variables field and Modify... button |
Specify environment variables to use during analysis. |
Managed code profiling mode drop-down |
|
Child application field |
Analyze a file that is not the starting application. For example: Analyze an executable (identified in this field) called by a script (identified in the Application field). Invoking these properties could decrease analysis overhead.
NOTE:
For the Dependencies Analysis Type: If you specify a script file in the Application field, you must specify the target executable in the Child application field. |
Modules radio buttons, field, and Modify... button |
Including/excluding modules could minimize analysis overhead. |
GPU kernels of interest field and Modify... button |
Analyze specific kernels only, minimizing analysis overhead. |
Use MPI launcher checkbox |
Generate a command line (enable) that appears in the Get command line field based on the following parameters:
|
Automatically stop collection after (sec) checkbox and field |
Stop collection after a specified number of seconds (enable and specify seconds). Invoking this property could minimize analysis overhead. |
Survey Analysis-Specific Controls
Use This |
To Do This |
---|---|
Automatically resume collection after (sec) checkbox and field |
Start running your target application with collection paused, then resume collection after a specified number of seconds (enable and specify seconds). Invoking this property could decrease analysis overhead.
TIP:
The corresponding CLI action option is --resume-after=<integer>, where the integer argument is in milliseconds, not seconds. |
Sampling Interval selector |
Set the wait time between each analysis collection CPU sample while your target application is running. Increasing the wait time could decrease analysis overhead. |
Collection data limit, MB selector |
Set the amount of collected raw data if exceeding a size threshold could cause issues. Not available for hardware event-based analyses. Decreasing the limit could decrease analysis overhead. |
Callstack unwinding mode drop-down list |
Set to After collection if:
Otherwise, set to During Collection. This mode improves stack accuracy but increases overhead. |
Stitch stacks checkbox |
Restore a logical call tree for Intel® oneAPI Threading Building Blocks (oneTBB) or OpenMP* applications by catching notifications from the runtime and attaching stacks to a point introducing a parallel workload (enable). Disable if Survey analysis runtime overhead exceeds 1.1x. |
Analyze MKL Loops and Functions checkbox |
Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in Intel Advisor reports (enable). Enabling could increase analysis overhead. |
Analyze Python loops and functions checkbox |
Show Python* loops and functions in Intel Advisor reports (enable). Enabling could increase analysis overhead. |
Analyze loops that reside in non-executed code paths checkbox |
Collect a variety of data during analysis for loops that reside in non-executed code paths, including loop assembly code, instruction set architecture (ISA), and vector length (enable). Enabling could increase analysis overhead.
NOTE:
Analyzing non-executed code paths in binaries that target multiple ISAs (contain multiple code paths) is available only for binaries compiled using the -ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler. |
Enable registry spill/fill analysis checkbox |
Calculate the number of consecutive load/store operations in registers and related memory traffic (enable). Enabling could increase analysis overhead. |
Enable static instruction mix analysis checkbox |
Statically calculate the number of specific instructions present in the binary (enable). Enabling could increase analysis overhead. |
Source caching drop-down list |
|
Trip Counts and FLOP Analysis-Specific Controls
Use This |
To Do This |
---|---|
Inherit settings from the Survey Hotspots Analysis Type checkbox |
Copy similar settings from Survey analysis properties (enable). When enabled, this option disables application parameters controls. |
Automatically resume collection after (sec) checkbox and field |
Start running your target application with collection paused, then resume collection after a specified number of seconds (enable and specify seconds). Invoking this property could decrease analysis overhead.
TIP:
The corresponding CLI action option is --resume-after=<integer>, where the integer argument is in milliseconds, not seconds. |
Trip Counts / Collect information about Loop Trip Counts checkbox |
Measure loop invocation and execution (enable). |
FLOP / Collect information about FLOP, L1 memory traffic, and AVX-512 mask usage checkbox |
Measure floating-point operations, integer operations, and memory traffic (enable). |
Callstacks / Collect callstacks checkbox |
Collect call stack information when performing analysis (enable). Enabling could increase analysis overhead. |
Capture metrics for dynamic loops and functions checkbox |
Collect metrics for dynamic Just-In-Time (JIT) generated code regions. |
Capture metrics for stripped binaries checkbox |
Collect metrics for stripped binaries. Enabling could increase analysis overhead. |
Cache Simulation / Enable Memory-Level Roofline with cache simulation checkbox |
Model multiple levels of cache for data, such as counts of loaded or stored bytes for each loop, to plot the Roofline chart for all memory levels (enable). Enabling could increase analysis overhead. |
Cache simulator configuration field |
Specify a cache hierarchy configuration to model (enable and specify hierarchy). The hierarchy configuration template is: [num_of_level1_caches]:[num_of_ways_level1_connected]:[level1_cache_size]:[level1_cacheline_size]/ [num_of_level2_caches]:[num_of_ways_level2_connected]:[level2_cache_size]:[level2_cacheline_size]/ [num_of_level3_caches]:[num_of_ways_level3_connected]:[level3_cache_size]:[level3_cacheline_size] For example: 4:8w:32k:64l/4:4w:256k:64l/1:16w:6m:64l is the hierarchy configuration for:
|
Data Transfer Simulation / Data transfer simulation mode drop-down |
Select a level of details for data transfer simulation:
|
GPU kernels matching mode drop-down | Select the GPU kernel matching strategy:
|
Suitability Analysis-Specific Controls
Use This |
To Do This |
---|---|
Inherit settings from the Survey Hotspots Analysis Type checkbox |
Copy similar settings from Survey analysis properties (enable). When enabled, this option disables application parameters controls. |
Automatically resume collection after (sec) checkbox and field |
Start running your target application with collection paused, then resume collection after a specified number of seconds (enable and specify seconds). Invoking this property could decrease analysis overhead.
TIP:
The corresponding CLI action option is --resume-after=<integer>, where the integer argument is in milliseconds, not seconds. |
Sampling Interval selector |
Set the wait time between each analysis collection sample while your target application is running. Increasing the wait time could decrease analysis overhead. |
Collection data limit, MB selector |
Set the amount of collected raw data if exceeding a size threshold could cause issues. Not available for hardware event-based analyses. Decreasing the limit could decrease analysis overhead. |
Memory Access Patterns Analysis-Specific Controls
Use This |
To Do This |
---|---|
Inherit settings from the Survey Hotspots Analysis Type checkbox |
Copy similar settings from Survey analysis properties (enable). When enabled, this option disables application parameters controls. |
Suppression mode group box |
|
Loop call count limit selector |
Choose the maximum number of instances each marked loop is analyzed. 0 = analyze all loop instances. Supplying a non-zero value could decrease analysis overhead. |
Instance of interest selector |
Analyze the nth child process, where 1 = the first process of the specified name in the application process tree. 0 = analyze all processes. Supplying a non-zero value could decrease analysis overhead. |
Report stack variables checkbox |
Report stack variables for which memory access strides are detected (enable). Enabling could increase analysis overhead. |
Report heap allocated variables checkbox |
Report heap-allocated variables for which memory access strides are detected (enable). Enabling could increase analysis overhead. |
Enable CPU cache simulation checkbox |
Model cache misses, cache misses and cache line utilization, or cache misses and loop footprint (enable and select desired options). Enabling could increase analysis overhead. |
Cache associativity drop-down list |
Set the cache associativity for modeling CPU cache behavior. You can set the value to the following power-of-two integers: 1, 2, 4, 8, 16. |
Cache sets drop-down list |
Set the cache set size (in bytes) for modeling CPU cache behavior. You can set the value to the following power-of-two integers: 256, 512, 1024, 2048, 4096, 8192. |
Cache line size drop-down list |
Set the cache line size (in bytes) to model CPU cache behavior. You can set the value to the following power-of-two integers: 4, 8, 16, 32, …, up to 65536. |
Cache simulation mode drop-down list |
Set the focus for modeling CPU cache behavior:
|
Dependencies Analysis Controls
Use This |
To Do This |
---|---|
Inherit settings from the Survey Hotspots Analysis Type checkbox |
Copy similar settings from Survey analysis properties (enable). When enabled, this option disables application parameters controls. |
Suppression mode radio buttons |
|
Loop call count limit selector |
Choose the maximum number of instances each marked loop is analyzed. 0 = analyze all loop instances. Supplying a non-zero value could decrease analysis overhead. |
Instance of interest selector |
Analyze the nth child process, where 1 = the first process of the specified name in the application process tree. 0 = analyze all processes. Supplying a non-zero value could decrease analysis overhead. |
Analyze stack variables checkbox | Analyze parallel data sharing for stack variables (enable). Enabling could increase analysis overhead. |
Filter stack variables by scope checkbox | Enable to report:
Enabling could increase analysis overhead. |
Reduction Detection / Filter reduction variables checkbox | Mark all potential reductions by a specific diagnostic (enable). Enabling could increase analysis overhead. |
Markup type checkbox | Select loops/functions by pre-defined markup algorithm. Supported algorithms are:
NOTE:
This option is available only from the Analysis Workflow pane for the Offload Modeling perspective.
|
Performance Modeling Properties
Use This |
To Do This |
---|---|
Device configuration | Select a pre-defined hardware configurations from a drop-down list to model application performance on. |
Other parameters | Enter a space-separated list of command-line parameters. For a full list of available options, see Command Option Reference. |