Visible to Intel only — GUID: nxd1637648766399
Ixiasoft
Visible to Intel only — GUID: nxd1637648766399
Ixiasoft
2.7. Clocking Scheme
Clock | Signal Name in Design | Description |
---|---|---|
Management Clock | mgmt_clk |
A free running 100 MHz clock for these components:
|
I2C Clock | i2c_clk | A 100 MHz clock input that clocks I2C slave, output buffers, SCDC registers, and link training process in the HDMI RX core, and EDID RAM. |
Video Clock | tx_vid_clk/rx_vid_clk | Video clock to TX and RX core. The clock runs at a fixed frequency of 225 MHz. |
TX/RX FRL Clock | tx_frl_clk/rx_frl_clk | FRL clock to for TX and RX core. |
RX PHY Clock Out 1 | rx_sysclk_div2 | System clock output clock to clock data from the transceiver. The frequency is system clock frequency/2. System clock frequency needs to be higher than the fastest PMA clock frequency, with the valid bit from the transceiver parallel data bus indicating the validity of data. For this HDMI design example, the rx_sysclk_div2 is 450MHz as the System PLL output frequency is 900MHz. |
RX PHY Clock Out 2 | rx_clk | Clock out recovered from the transceiver, and the frequency varies depending on the data rate and transceiver width. RX transceiver clock out frequency = Transceiver data rate/ Transceiver width For this HDMI design example, the RX transceiver clock out from channel 1 clocks the RX transceiver core input (rx_coreclkin) and FRL IOPLL (pll_frl_rx) reference clock |
TX PHY Clock Out 1 | tx_sysclk_div2 | System clock output clock to clock data from the transceiver. The frequency is system clock frequency/2. System clock frequency needs to be higher than the fastest PMA clock frequency, with the valid bit from the transceiver parallel data bus indicating the validity of data. For this HDMI design example, the tx_sysclk_div2 is 450MHz as the System PLL output frequency is 900MHz. |
TX PHY Clock Out 2 | tx_clk | Parallel clock generated from system PLL, and the frequency varies depending on the data rate and transceiver width. TX transceiver clock out frequency = Transceiver data rate/ Transceiver width For this HDMI design example, the TX transceiver clock out from channel 1 clocks the TX transceiver core input (rx_coreclkin) and FRL IOPLL (pll_frl_tx) reference clock. |
System PLL Reference Clock | fgt_refclk_100 | Reference clock to the System PLL block. The clock only supports 100 MHz frequency. |
System PLL Clock | systempll_clk | Reference clock to the TX and RX Transceiver System PLL Clock. The clock frequency is 100 MHz. |
Transceiver Reference Clock | refclk_fgt | Reference clock to the TX PLL and RX CDR. |
TX Cadence Clock | tx_cadence_clk | Clock for the tx_cadence_slow_clk in the TX transceiver to generate the tx_cadence. Since there is a conversion of the data width from 40 bits from TX core to 64 bits in TX transceiver, the tx_cadence_slow_clk needs to be supplied with a clock derived from transceiver output clock with the frequency 5/8*Tx transceiver clock frequency. |