Visible to Intel only — GUID: oug1602694251751
Ixiasoft
1. F-tile Overview
2. F-tile Architecture
3. Implementing the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
4. Implementing the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5. Implementing the F-Tile Global Avalon® Memory-Mapped Interface Intel® FPGA IP
6. F-tile PMA/FEC Direct PHY Design Example Implementation
7. Supported Tools
8. Debugging F-Tile Transceiver Links
9. F-tile Architecture and PMA and FEC Direct PHY IP User Guide Archives
10. Document Revision History for F-tile Architecture and PMA and FEC Direct PHY IP User Guide
2.1.1. FHT and FGT PMAs
2.1.2. 400G Hard IP and 200G Hard IP
2.1.3. PMA Data Rates
2.1.4. FEC Architecture
2.1.5. PCIe* Hard IP
2.1.6. Bonding Architecture
2.1.7. Deskew Logic
2.1.8. Embedded Multi-die Interconnect Bridge (EMIB)
2.1.9. IEEE 1588 Precision Time Protocol for Ethernet
2.1.10. Clock Networks
2.1.11. Reconfiguration Interfaces
2.2.1. PMA-to-Fracture Mapping
2.2.2. Determining Which PMA to Map to Which Fracture
2.2.3. Hard IP Placement Rules
2.2.4. IEEE 1588 Precision Time Protocol Placement Rules
2.2.5. Topologies
2.2.6. FEC Placement Rules
2.2.7. Clock Rules and Restrictions
2.2.8. Bonding Placement Rules
2.2.9. Preserving Unused PMA Lanes
2.2.2.1. Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
2.2.2.2. Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
2.2.2.3. Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
2.2.2.4. Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
2.2.2.5. Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
2.2.2.6. Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.7. Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.8. Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.9. Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.10. Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP Overview
3.2. Designing with F-Tile PMA/FEC Direct PHY Intel® FPGA IP
3.3. Configuring the IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Independent Port Configurations
3.11. Configuration Registers
3.12. Configurable Intel® Quartus® Prime Software Settings
3.13. Configuring the F-Tile PMA/FEC Direct PHY Intel® FPGA IP for Hardware Testing
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. RS-FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. TX PMA Status Signals
3.4.7. RX PMA Status Signals
3.4.8. TX and RX PMA and Core Interface FIFO Signals
3.4.9. PMA Avalon® Memory Mapped Interface Signals
3.4.10. Datapath Avalon® Memory Mapped Interface Signals
3.5.1. Parallel Data Mapping Information
3.5.2. TX and RX Parallel Data Mapping Information for Different Configurations
3.5.3. Example of TX Parallel Data for PMA Width = 8, 10, 16, 20, 32 (X=1)
3.5.4. Example of TX Parallel Data for PMA width = 64 (X=2)
3.5.5. Example of TX Parallel Data for PMA width = 64 (X=2) for FEC Direct Mode
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Reset Signals—Descriptions
3.8.5. Status Signals—Descriptions
3.8.6. Run-time Reset Sequence—TX
3.8.7. Run-time Reset Sequence—RX
3.8.8. Run-time Reset Sequence—TX + RX
3.8.9. Run-time Reset Sequence—TX with FEC
6.1. Implementing the F-tile PMA/FEC Direct PHY Design Example
6.2. Instantiating the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
6.3. Implementing a RS-FEC Direct Design in the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
6.4. Instantiating the F-Tile Reference and System PLL Clocks Intel® FPGA IP
6.5. Enabling Custom Cadence Generation Ports and Logic
6.6. Connecting the F-tile PMA/FEC Direct PHY Design IP
6.7. Simulating the F-Tile PMA/FEC Direct PHY Design Example
6.8. F-tile Interface Planning
Visible to Intel only — GUID: oug1602694251751
Ixiasoft
2.2.2. Determining Which PMA to Map to Which Fracture
- Determine the hard IP and PMA type you need (400G hard IP with FHT, 400G hard IP with FGT, or 200G hard IP with FGT).
- Determine the number of PMAs you need to implement your interface.
- Determine the fracture type (for example, st_x16 or st_x8 ) using the "Fracture Type Used by Mode" table.
- Identify possible fracture indices of the required fracture type that can map to the required number of PMAs. (The examples in the following sections explain this.)
- If there is only one possible fracture index that meets your requirement, you must use that fracture index.
- As you place each fracture, keep in mind that each placement blocks other fracture placements.
- If there are multiple fracture indices that meet your requirements:
- Place your interfaces’ fractures from top to bottom.
- Place your fractures in such a way as to be able to place all interfaces. Keep in mind that each placement blocks other fracture placements.
- Do not create crisscross connections when mapping fractures to PMAs.
Figure 17. PMA-to-Fracture Connections Example
- Place your higher data rate interfaces first.
- When placing interfaces with the same data rate (same fracture type), start placing interfaces that use a higher number of PMAs first. For example, place 100GbE-2 before 100GbE-1.
- Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
- Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
- Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
- Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
- Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
- Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
- Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
- Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
- Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
- Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
Related Information