Visible to Intel only — GUID: mwh1410471100757
Ixiasoft
1. Signal Integrity Analysis with Third-Party Tools
2. Reviewing Printed Circuit Board Schematics with the Intel® Quartus® Prime Software
3. Mentor Graphics* PCB Design Tools Support
4. Cadence Board Design Tools Support
5. Intel Quartus Prime Pro Edition User Guide: PCB Design Tools Document Archives
A. Intel® Quartus® Prime Pro Edition User Guides
1.4.1. Elements of an IBIS Model
1.4.2. Creating Accurate IBIS Models
1.4.3. Design Simulation Using the Mentor Graphics* HyperLynx* Software
1.4.4. Configuring LineSim to Use Intel IBIS Models
1.4.5. Integrating Intel IBIS Models into LineSim Simulations
1.4.6. Running and Interpreting LineSim Simulations
1.5.1. Supported Devices and Signaling
1.5.2. Accessing HSPICE Simulation Kits
1.5.3. The Double Counting Problem in HSPICE Simulations
1.5.4. HSPICE Writer Tool Flow
1.5.5. Running an HSPICE Simulation
1.5.6. Interpreting the Results of an Output Simulation
1.5.7. Interpreting the Results of an Input Simulation
1.5.8. Viewing and Interpreting Tabular Simulation Results
1.5.9. Viewing Graphical Simulation Results
1.5.10. Making Design Adjustments Based on HSPICE Simulations
1.5.11. Sample Input for I/O HSPICE Simulation Deck
1.5.12. Sample Output for I/O HSPICE Simulation Deck
1.5.13. Advanced Topics
1.5.4.1. Applying I/O Assignments
1.5.4.2. Enabling HSPICE Writer
1.5.4.3. Enabling HSPICE Writer Using Assignments
1.5.4.4. Naming Conventions for HSPICE Files
1.5.4.5. Invoking HSPICE Writer
1.5.4.6. Invoking HSPICE Writer from the Command Line
1.5.4.7. Customizing Automatically Generated HSPICE Decks
1.5.12.1. Header Comment
1.5.12.2. Simulation Conditions
1.5.12.3. Simulation Options
1.5.12.4. Constant Definition
1.5.12.5. I/O Buffer Netlist
1.5.12.6. Drive Strength
1.5.12.7. Slew Rate and Delay Chain
1.5.12.8. I/O Buffer Instantiation
1.5.12.9. Board and Trace Termination
1.5.12.10. Double-Counting Compensation Circuitry
1.5.12.11. Simulation Analysis
2.1. Reviewing Intel® Quartus® Prime Software Settings
2.2. Reviewing Device Pin-Out Information in the Fitter Report
2.3. Reviewing Compilation Error and Warning Messages
2.4. Using Additional Intel® Quartus® Prime Software Features
2.5. Using Additional Intel® Quartus® Prime Software Tools
2.6. Reviewing Printed Circuit Board Schematics with the Intel® Quartus® Prime Software Revision History
4.1. Cadence PCB Design Tools Support
4.2. Product Comparison
4.3. FPGA-to-PCB Design Flow
4.4. Setting Up the Intel® Quartus® Prime Software
4.5. FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
4.7. Cadence Board Design Tools Support Revision History
Visible to Intel only — GUID: mwh1410471100757
Ixiasoft
1.4.1. Elements of an IBIS Model
An IBIS model file ( .ibs ) is a text file that describes the behavior of an I/O buffer across minimum, typical, and maximum temperature and voltage ranges with a specified test load.
The tables and values specified in the IBIS file describe five basic elements of the I/O buffer.
Figure 2. Five Basic Elements of an I/O Buffer in IBIS Models
The following elements correspond to each numbered block.
- Pulldown—A voltage-current table describes the current when the buffer is driven low based on a pull-down voltage range of –VCC to 2 VCC.
- Pullup—A voltage-current table describes the current when the buffer is driven high based on a pull-up voltage range of –VCC to VCC.
- Ground and Power Clamps—Voltage-current tables describe the current when clamping diodes for electrostatic discharge (ESD) are present. The ground clamp voltage range is –VCC to VCC, and the power clamp voltage range is –VCC to ground.
- Ramp and Rising/Falling Waveform—A voltage-time (dv/dt) ratio describes the rise and fall time of the buffer during a logic transition. Optional rising and falling waveform tables can be added to more accurately describe the characteristics of the rising and falling transitions.
- Total Output Capacitance and Package RLC—The total output capacitance includes the parasitic capacitances of the output pad, clamp diodes (if present), and input transistors. The package RLC is device package-specific and defines the resistance, inductance, and capacitance of the bond wire and pin of the I/O.
Related Information